Notation: In the following questions, underlined letters such as $a, b,$ etc. denote column vectors of proper length; boldface letters such as $A, B,$ etc. denote matrices of proper size; A^T means the transpose of matrix A. I_n is the $(n \times n)$ identity matrix. $\|a\|$ means the Euclidean norm of vector a. \mathbb{R} is the usual set of all real numbers. $\det(A)$ is the determinant of square matrix A. row(A) and col(A) are the row and column spaces of A over \mathbb{R}, respectively. For any linear map T over vector spaces, we use $\ker(T)$, $\text{rank}(T)$ and $\text{nullity}(T)$ for the kernel, rank and nullity of T, respectively. Let W be a subspace of \mathbb{R}^n; then by W^\perp we mean the orthogonal complement of W in the Euclidean inner product space \mathbb{R}^n. $\mathcal{L}: f(t) \mapsto F(s)$ and $\mathcal{L}^{-1}: F(s) \mapsto f(t)$ denote the unilateral Laplace and inverse Laplace transforms for $t \geq 0$, respectively.

一、 Which of the following sets is basis (are bases) for \mathbb{R}^3?

(A) $\{[0,1,0]^T, [0,0,1]^T, [1,0,0]^T\}$.

(B) $\{-2,4,-6\}^T, [1,-2,3]^T\}$.

(C) $\{[0.14,0,-0.1]^T, [-1,-0.2,0.4]^T, [0.5,0.5,-1]^T\}.$

(E) None of the above are true.
二、 Which of the following statements about the multiplicative inverse of a matrix is/are true?

(A) A matrix A is called invertible if there exists a matrix B such that AB is an identity matrix.

(B) If a matrix is both diagonalizable and invertible, then so is its multiplicative inverse.

(C) Suppose that matrices A of size $n \times n$ and D of size $m \times m$ are invertible and that matrix C is of size $m \times n$; then the following identity is true

\[
\begin{bmatrix}
A & 0 \\
C & D
\end{bmatrix}^{-1} =
\begin{bmatrix}
A^{-1} & 0 \\
-D^{-1}CA^{-1} & D^{-1}
\end{bmatrix}.
\]

(D) Methods for finding the multiplicative inverse of a matrix include LU factorization, Gaussian elimination, eigen-decomposition, and Gram-Schmidt process.

(E) None of the above are true.

三、 Which of the following properties of eigenvalue is/are true?

(A) A scalar λ is an eigenvalue of matrix A if and only if λ is an eigenvalue of A^\top.

(B) A matrix is positive semi-definite if and only if all of its eigenvalues are non-negative.

(C) Every eigenvalue of a matrix A is also an eigenvalue of A^2.

(D) If matrices A and B are similar, then they have the same eigenvalues.

(E) None of the above are true.
四、Which of the following matrices is/are diagonalizable?

(A) \[
\begin{bmatrix}
3 & -1 \\
0 & 3 \\
\end{bmatrix}
\]

(B) \[
\begin{bmatrix}
5 & 0 \\
1 & 5 \\
0 & 0 & 4 \\
\end{bmatrix}
\]

(C) \[
\begin{bmatrix}
-2 & 8 & -4 \\
-6 & 8 & 0 \\
-6 & 2 & 6 \\
\end{bmatrix}
\]

(D) \[
\begin{bmatrix}
2 & 0 & -2 & 9 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 5 \\
\end{bmatrix}
\]

(E) None of the above are true.

五、Which of the following statements about matrix factorization is/are true?

(A) If a matrix \(A \) is positive definite, then \(A \) has “an” LU factorization, \(A = LU \), where the diagonal entries of \(U \) are positive.

(B) Suppose that a matrix \(A = QR \), where \(Q \) is an \(m \times n \) matrix and \(R \) is an \(n \times n \) matrix. If the columns of \(A \) are linearly independent, then \(R \) must be invertible.

(C) Any factorization of a matrix \(A = UDV^T \), with matrices \(U, V \) square and positive diagonal entries in the matrix \(D \), is called a singular value decomposition of \(A \).

(D) An \(n \times n \) matrix \(A \) is positive definite if and only if \(A \) has “a” Cholesky factorization \(A = R^T R \) for some invertible upper triangular matrix \(R \) whose diagonal entries are all positive.

(E) None of the above are true.
六、 The Householder matrix $H = I_n - 2\text{proj}_u$, where $\text{proj}_u = \frac{1}{\|u\|^2} uu^T$ is the orthogonal projection matrix onto some nonzero vector $u \in \mathbb{R}^n$, is a reflection matrix. Which of the following statements is/are true?

(A) Consider the 2-dimensional space, i.e. $n = 2$. For vectors $u, d, p, q \in \mathbb{R}^2$ shown in the figure below, we have $Hd = p$.

(B) H is a symmetric and orthogonal matrix.

(C) Both linear systems $A\underline{x} = b$ and $HA\underline{x} = Hb$ are equivalent.

(D) Let $a = [a_1, \ldots, a_n]^T$ and $u = [a_1 - \|a\|, a_2, \ldots, a_n]^T \neq 0$. Then $\|u\|^2 = -2\|a\|u_1$ and $Ha = [\|a\|, 0, \ldots, 0]^T$.

(E) None of the above are true.
七、 Given

\[
A = \begin{bmatrix}
1 & 11 & 23 & 81 & 97 \\
2 & 22 & 46 & 162 & 194 \\
3 & 1 & 11 & 2 & 1 \\
9 & 0 & 1 & -4 & 3 \\
2 & 5 & 3 & 2 & 1
\end{bmatrix}, \quad
B = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
7 & 6 & 0 & 0 & 0 \\
3 & 9 & 2 & 0 & 0 \\
3 & -4 & 0 & -1 & 0 \\
1 & 2 & 101 & -5 & -2
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
7 & 1 & 0 & 5 & 37 \\
3 & 20 & 0 & 9 & 71 \\
8 & -71 & 0 & 1 & 13 \\
2 & -2 & 0 & 2 & 3 \\
1 & -5 & 0 & 45 & 1
\end{bmatrix}, \quad
D = \begin{bmatrix}
0 & 1 & 0 & 4 & 0 & -2 \\
37 & 20 & 7 & 2 & 1 & 4 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -10 & -1 & 0 & -2 \\
2 & -5 & -94 & 0 & 0 & 4 \\
0 & -1 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
E = \begin{bmatrix}
7 & 1 & 23 & 0 & 0 & 1 \\
1 & 2 & 101 & -5 & -2 & 0 \\
3 & -4 & 0 & -1 & 0 & 0 \\
3 & 9 & 2 & 0 & 0 & 0 \\
7 & 6 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad
F = \begin{bmatrix}
1 & 0 & 0 & 2 & 9 \\
7 & 2 & 0 & 3 & 7 \\
3 & 7 & 1 & 5 & -9 \\
0 & 0 & 0 & -4 & 3 \\
0 & 0 & 0 & 2 & 1
\end{bmatrix}
\]

which of the following statements is/are true?

(A) \(\det(A) = \det(C) = 0. \)

(B) \(\det(D) = -40. \)

(C) \(\det(B) = \det(E). \)

(D) \(\det(F) = 20. \)

(E) None of the above are true.
八、Consider a 3×3 nonzero matrix A, and let $W = \text{col}(A)$ and $V = \text{col}(A^T)$. The least squares solutions ε_{LS} to $Ax = b$ are illustrated in the following figure, where $\text{proj}_W b$ is the orthogonal projection of vector b onto vector space W. A minimum length least squares solution ε_{MILLS} is the one among the least squares solutions that has a minimum norm.

Which of the following statements is/are true?

(A) $(\text{col}(A))^\perp = \ker(A^T)$ is proved by either (1) if $x \in (\text{col}(A))^\perp$, then $x^T Ax = 0$ for any x; and then $A^T x = 0$; or (2) if $y \in \ker(A^T)$, then $y^T Ax = 0$ for any x.

(B) Let $h = b - \text{proj}_W b$ (see the above figure). Then $A^T h = 0$ and the system $Ax = h + y$ for any $y \in \text{col}(A)$ is a consistent system, i.e., $Ax = h + y$ has at least one solution (not least squares solution).

(C) A least squares solution ε_{LS} to $Ax = b$ satisfies $Ax = \text{proj}_W b$, and then satisfies $A^T Ax = A^T b$.

(D) The minimum length least squares solution ε_{MILLS} to $Ax = b$ is unique, and $\varepsilon_{MILLS} = \text{proj}_V \varepsilon_{LS}$, where $V = \text{col}(A^T)$.

(E) None of the above are true.
九．Let \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) be the eigenvectors of matrix \(\mathbf{A} \) corresponding respectively to eigenvalues \(\lambda_1 \) and \(\lambda_2 \), where
\[
\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}.
\]
It is found that \(\lambda_1 > 1 > |\lambda_2| \). With matrix \(\mathbf{A} \), let \(\mathbf{x}_n = [x_{n,1}, x_{n,2}]^\top \in \mathbb{R}^2 \) for \(n = 0, 1, \ldots \) be a series of vectors related by \(\mathbf{x}_{n+1} = \mathbf{A}\mathbf{x}_n \). Given the initial condition \(\mathbf{x}_0 = [1, 0]^\top = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \) for some \(\alpha, \beta \in \mathbb{R} \), which of the following statements is/are true?

(A) \(\beta = \frac{1}{\lambda_1 - \lambda_2} \).

(B) \(\mathbf{x}_n = \alpha(\lambda_1)^n \mathbf{v}_1 + \beta(\lambda_2)^n \mathbf{v}_2 \).

(C) \(\lim_{n \to \infty} \frac{x_{n,1}}{x_{n+1,1}} = \lambda_1 \).

(D) \(\lim_{n \to \infty} \frac{x_{n,2}}{x_{n+1,2}} = \lambda_1 \).

(E) None of the above are true.
Let T_u be a linear transformation on \mathbb{R}^3 for a rotation by an angle θ about a unit vector u. Specifically, we let the matrix for T_u with respect to the standard basis S for \mathbb{R}^3 be

$$\mathbf{G} = [T_u]_S = \begin{bmatrix} c + u_1^2(1-c) & u_1u_2(1-c) - u_3s & u_1u_3(1-c) + u_2s \\ u_1u_2(1-c) + u_3s & c + u_2^2(1-c) & u_2u_3(1-c) - u_1s \\ u_1u_3(1-c) - u_2s & u_2u_3(1-c) + u_1s & c + u_3^2(1-c) \end{bmatrix},$$

where $[u]_S = [u_1, u_2, u_3]^T$ is the coordinate vector of u with respect to S, $c = \cos(\theta)$ and $s = \sin(\theta)$. Furthermore, let \mathbf{A} be the rotation matrix about the z-axis of Cartesian coordinate system by an angle θ, i.e.,

$$\mathbf{A} = [T_\theta]_S = \begin{bmatrix} c & -s & 0 \\ s & c & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where $[u]_S = [0, 0, 1]^T$. Let $B = \{\mathbf{n}, \mathbf{b}, \mathbf{u}\}$ be an ordered orthonormal basis for \mathbb{R}^3 with $[\mathbf{n}]_S = [n_1, n_2, n_3]^T$ and $[\mathbf{b}]_S = [b_1, b_2, b_3]^T$ and let $\mathbf{P}_{S \leftarrow B} = [[n]_S, [b]_S, [u]_S]$ be the change-of-basis matrix for changing basis from B to S. Which of the following statements is/are true?

(A) $n_1^2 + b_1^2 + u_1^2 = 1$, $n_1n_2 + b_1b_2 + u_1u_2 = 0$ and $n_1n_3 + b_1b_3 + u_1u_3 = 0$.

(B) The coordinate vector of \mathbf{u} with respect to basis B is $[\mathbf{u}]_B = \mathbf{P}_{S \leftarrow B} [\mathbf{u}]_S$.

(C) $\mathbf{G} = \mathbf{P}_{S \leftarrow B} \mathbf{A}$.

(D) $\mathbf{G} = \mathbf{A} \mathbf{P}_{S \leftarrow B}$.

(E) The matrix for T_u with respect to basis B is \mathbf{A}.
十一、 Solve for $y(x)$ the first order differential equation

$$xy'(x) - 4x^2y(x) + 2y(x)\ln(y(x)) = 0$$

by the substitution $v = \ln(y(x))$. Which of the following statements is/are true?

(A) It is a nonlinear ordinary differential equation for the dependent variable y.

(B) It is a nonlinear ordinary differential equation for the new variable v.

(C) There exists a solution $y(x)$ satisfying the condition $y(0) = 1$.

(D) There exists a solution $y(x)$ satisfying the condition $y(1) = 1$.

(E) None of the above are true.
十二、 The Cauchy-Euler equation

\[x^2y''(x) - 4xy'(x) + 6y(x) = 0 \]

can be transformed into a constant coefficient equation \(y''(v) + by'(v) + cy(v) = 0 \) by the substitution \(v = \ln(x) \). Which of the following statements is/are true?

(A) \(b = -5 \).

(B) \(c = -6 \).

(C) The solution \(y(x) \) exists only for \(x > 0 \).

(D) \(y(x) = C_1x^2 + C_2x^3 \) for some constants \(C_1 \) and \(C_2 \).

(E) None of the above are true.

十三、 Continued from Problem 十二. Solve the non-homogeneous second order differential equation

\[x^2y''(x) - 4xy'(x) + 6y(x) = x^3 \]

by variation of parameters, i.e., set the particular solution as \(y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x) \), where \(y_1(x) \) and \(y_2(x) \) are homogeneous solutions. With initial conditions \(y(1) = 0 \) and \(y'(1) = 1 \) for the complete solution \(y(x) \), which of the following statements is/are true?

(A) The real valued solution \(y(x) \) exists only for \(x > 0 \).

(B) \(y(2) = 2 \).
The first order system

\[
\begin{bmatrix}
 x'_1(t) \\
 x'_2(t) \\
 x'_3(t) \\
 x'_4(t)
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 8 & 0 & 17 & 0 \\
 0 & 0 & 0 & 1 \\
 17 & 0 & 8 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1(t) \\
 x_2(t) \\
 x_3(t) \\
 x_4(t)
\end{bmatrix}
\]

can be reduced into an equivalent second order system \(y''(t) = By(t) \) with \(y(t) = [x_1(t), x_3(t)]^T \). Which of the following statements is/are true?

(A) \(B = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} \).

(B) \(B = \begin{bmatrix} 8 & 17 \\ 17 & 8 \end{bmatrix} \).

(C) The eigenvalues of \(B \) are 9 and 25.

(D) \([1, 1]^T\) is an eigenvector for \(B \).

(E) None of the above are true.
十五、 Continued from Problem 十四. Find the particular solution for the second order system
\[y''(t) = By(t) \] with initial conditions \(y(0) = [1, 3]^T \) and \(y'(0) = [-3, 3]^T \). Which of the following statements is/are true?

(A) \(x_1(t) = e^{-5t} + e^{5t} - \cos(3t) - \sin(3t) \).
(B) \(x_3(t) = e^{-5t} + e^{5t} + e^{3t} \).
(C) \((x_1(t) + x_3(t)) \) is an odd function in \(t \).
(D) \((x_1(t) - x_3(t)) \) is an odd function in \(t \).
(E) None of the above are true.

十六、 For \(s > 0 \), let \(F(s) \) be the unilateral Laplace transform of function \(f(t) \) given by

\[F(s) = \frac{1}{2s^2} - \frac{1}{s(e^s + e^{3s})}. \]

Which of the following statements regarding the values of \(f(t) \) is/are true?

(A) \(f(1) = \frac{1}{2} \).
(B) \(f(2) = 1 \).
(C) \(f(4) = 2 \).
(D) \(f(8) = 3 \).
(E) None of the above are true.
十七. Consider the following periodic function

\[f(t) = \sum_{n=-\infty}^{\infty} \exp(-\pi(t-n)^2) \]

which has a Fourier series representation

\[f(t) = \sum_{m \geq 0} a_m \cos(2\pi mt) + b_m \sin(2\pi mt) \]

for some \(a_m, b_m \in \mathbb{R} \) and for all \(t \in \mathbb{R} \). Which of the following statements is/are true?

(A) \(a_0 = \frac{1}{\sqrt{\pi}} \).
(B) \(a_1 = e^{-\pi} \).
(C) \(a_2 = \frac{3}{\pi^2} \).
(D) \(b_2 = e^{-4\pi} \).
(E) None of the above are true.
十八. For the following second order differential equation

\[tx''(t) + (4t - 2)x'(t) + (2t - 4)x(t) = 0 \]

Let \(x_1(t) = t^{r_1} \sum_{n \geq 0} a_n t^n \) and \(x_2(t) = t^{r_2} \sum_{n \geq 0} b_n t^n \) be the two linearly independent Frobenius series solutions for \(x(t) \) when \(t > 0 \), where \(r_1 \) and \(r_2 \) are the zeros of the corresponding indicial equation. Assume \(r_1 \geq r_2 \) and \(a_0 = b_0 = 1 \). Which of the following statements is/are true?

(A) \(r_1 - r_2 \) is not an integer.
(B) \(a_2 = \frac{13}{3} \).
(C) \(a_3 = -\frac{6}{18} \).
(D) \(b_3 = \frac{4}{3} \).
(E) None of the above are true.
十九、Continued from Problem 十八. The second order differential equation can be alternatively solved by using Laplace transform. Assuming \(x(0) = 0 \) and \(\int_0^\infty x(t)dt = 1 \), which of the following statements is/are true about the values of \(x(t) \) and its unilateral Laplace transform \(X(s) = \mathcal{L}\{x(t)\} \)?

(A) \(x'(0) = 1 \).
(B) \(x(1) = 1 \).
(C) \(X(1) < 1 \).
(D) Values of \(X(s) \) exists for all \(s > -1 \).
(E) None of the above are true.
Consider the following boundary value problem for the bivariate function \(u(x, t) \) defined for \(0 \leq x \leq \pi \) and \(t \geq 0 \)

\[
\frac{\partial}{\partial t} u(x, t) = 2 \frac{\partial^2}{\partial x^2} u(x, t) + u(x, t)
\]

Given the end-point and initial conditions

\[
\left. \frac{\partial}{\partial x} u(x, t) \right|_{x=0} = \left. \frac{\partial}{\partial x} u(x, t) \right|_{x=\pi} = 0 \quad \text{and} \quad u(x, 0) = x(\pi - x)
\]

which of the following statements is/are true for the solution \(u(x, t) \) when it is expressed as

\[
u(x, t) = \sum_{n \geq 0} a_n e^{\imath n t} \cos(2nx) + b_n e^{\imath n t} \sin(2nx)
\]

for some constants \(a_n, b_n, p_n, q_n \in \mathbb{R} \)?

(A) \(a_0 = \frac{\pi}{6} \).

(B) \(a_1 = -1 \).

(C) \(p_2 = -31 \).

(D) \(b_1 = -1 \).

(E) None of the above are true.