類組:<u>電機類</u> 科目:<u>工程數學 D(3006)</u>

共_4_頁第_/_頁

(各計算題應詳列計算推導過程,無計算推導過程者不于計分)

Notation: In the following questions, boldface letters such as \mathbf{a} , \mathbf{b} , etc. denote columns vectors of proper length; boldface letters such as \mathbf{A} , \mathbf{B} etc. denote matrices of proper size; \mathbf{A}^T means the transpose of matrix \mathbf{A} , and \mathbf{A}^H is the Hermitian transpose (a.k.a. conjugate transpose) of \mathbf{A} ; \mathbf{A}^{-1} means the inverse of matrix \mathbf{A} . \mathbf{I}_n is the $(n \times n)$ identity matrix. $\|\mathbf{a}\|$ means the Euclidean norm of vector \mathbf{a} . By $\mathbf{A} \in \mathbf{R}^{m \times n}$ we mean \mathbf{A} is an $m \times n$ real-value matrix. Null(\mathbf{A}) is the null space, Col(\mathbf{A}) the column space, and Row(\mathbf{A}) the row space of \mathbf{A} respectively.

一、 (10%,計算題)

Given an invertible matrix $A \in \mathbb{R}^{n \times n}$, a nonzero matrix $B \in \mathbb{R}^{n \times n}$, and an augmented matrix C=

. For each statement that follows, <u>please answer true or false</u>. And you <u>MUST explain or prove your answer</u>.

- (A).(2%) The rank of $\bf A$ is n, and the rank of $\bf B$ is more than one.
- (B). (2%) If Col(A)=Col(B), the reduced row echelon form of C is $[I_n|I_n]$.
- (C). (2%) If C is the standard matrix of a linear transform T, T is one-to-one.
- (D).(2%) **CC**^T is invertible.
- (E). (2%) Any vector \mathbf{v} in \mathbf{R}^n can be expressed as the sum of the orthogonal projection of \mathbf{v} onto each column of \mathbf{A}^{-1} .

二、 (15%, 計算題)

Let $A, B \in \mathbb{R}^{4 \times 6}$, and B is obtained by conducting elementary row operations from A. B and the first, third, and fourth column of A are given by

$$\mathbf{B} = \begin{bmatrix} 1 & 3 & 0 & 1 & 4 & 2 \\ 2 & 3 & 1 & 0 & 5 & 3 \\ 2 & 3 & 0 & 1 & 5 & 2 \\ 0 & 3 & 1 & 0 & 3 & 3 \end{bmatrix}, \mathbf{a}_{1} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \mathbf{a}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \text{ and } \mathbf{a}_{4} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}.$$

- (A).(4%) Determine the matrix A and the dimension of Null(A).
- (B). (3%) Please find a basis for Row(A).

類組:電機類 科目:工程數學 D(3006)

共 4 頁第2頁

- (C). (3%) Please find a basis for Null(A).
- (D).(5%) Let $\mathbf{v} = [1 1 \ 0 \ 0]^T$, please find the orthogonal projection of \mathbf{v} on $\text{Col}(\mathbf{A})$.

Consider the rotation by θ of real-valued vectors on a plane shown in the figure below. (Note that $0 < \theta < 2\pi$, and $\theta \neq 0$ to avoid trivial situations.)

$$Qj = \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

$$Qi = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$$

- (A).(3%) Find the transformation matrix representing the rotation.
- (B). (3%) When will the transformation matrix have non-zero eigenvalues? Please explain.
- (C). (4%) Is the transformation matrix similar to the identity matrix? Why?

四、 (15%,計算題)

Let $P_3 = \{c_0 + c_1x + c_2x + c_3x^3\}$ be the set of all *n*-th order polynomials with real-valued c_i . Define the inner product of two vectors in P_3 , say $\mathbf{u} = c_0 + \ldots + c_3x^3$ and $\mathbf{v} = d_0 + \ldots + d_3x^3$, as $\langle \mathbf{u}, \mathbf{v} \rangle = c_0d_0 + c_1d_1 + c_2d_2 + c_3d_3$. Note that P_3 can be regarded as a normed vector space.

- (A).(3%) Give an example of two vectors in P_3 that are orthogonal to each other.
- (B). (3%) Give an example of a unit-length vector in P_3 .
- (C). (3%) Show that the set $\{1 + x + x^2 + x^3, 1 x x^2 + x^3, 1 + x x^2 x^3, 1 x + x^2 x^3\}$ can be used as a basis for P_3 .
- (D).(3%) Use the set $\{1, x, x^2, x^3\}$ as the basis for P_3 . Find the matrix representation of the linear transformation that does differentiation on polynomials in P_3 .

類組:電機類 科目:工程數學 D(3006)

共 4 頁 第 3 頁

(E). (3%) Continue with part (D). Can the matrix representing differentiation be diagonalized? Why?

Find the general solution y(x) for the given differential equations.

(A).(5%)
$$(x+3)^2y'' - 8(x+3)y' + 14y = 0$$

(B). (5%)
$$x^2y'' - 4xy' + 6y = \ln x^2$$

Find the solution y(x) of the following initial value problem for x > 1.

$$x^2y'' - 2xy' + 2y = x \ln x$$
, $y(1) = 1$, $y'(1) = 0$

Please answer the following questions:

(A). (5%) Consider a system of linear differential equations in the following vector form:

$$\frac{d}{dt}\mathbf{v}(t) = \mathbf{M}\mathbf{v}(t)$$

Here $\mathbf{v}(t)$ is an n-dimensional column vector and \mathbf{M} is an $n \times n$ matrix. Assume that the matrix \mathbf{M} can be diagonalized by a similarity transformation:

$$SMS^{-1} = D$$

Here **S** is the transformation matrix and **D** is a diagonal matrix with $\lambda_1, \lambda_2, ..., \lambda_n$ as its diagonal elements. The initial values of the equations form the vector $\mathbf{v}(0)$ and $\mathbf{P}(t)$ is a diagonal matrix with $\exp(\lambda_1 t), \exp(\lambda_2 t), ..., \exp(\lambda_n t)$ as its diagonal elements. Please express the solution $\mathbf{v}(t)$ for t > 0 in terms of $\mathbf{v}(0)$, **S** and $\mathbf{P}(t)$ and explain why.

(B). (5%) Continued from (A), if the matrix M is given by

$$\mathbf{M} = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix},$$

類組:電機類 科目:工程數學 D(3006)

共 4 頁 第 4 頁

write down a transformation matrix **S** that can diagonalize **M** into **D** and also write down the corresponding diagonal matrix **D**. (C). (5%) Consider a system of differential equations in the following vector form:

$$\frac{d}{dt}\mathbf{v}(t) = \mathbf{M}\mathbf{v}(t) + \mathbf{f}(t)$$

Here the additional term f(t) is a known n-dimensional t-dependent column vector and the other symbols are the same as in (A). Please express the solution $\mathbf{v}(t)$ for t > 0 in terms of $\mathbf{v}(0)$, \mathbf{S} , $\mathbf{P}(t)$, $\mathbf{f}(t)$ and explain why.

Using the Laplace transform method to find the solution y(x) for the following initial value problem:

$$y''''(x) + 4y'''(x) + 11y''(x) + 14y'(x) + 10y(x) = 0,$$

$$y'''(0) = 1, y''(0) = 0, y'(0) = 0, y(0) = 0$$

[Hint:
$$s^4 + 4s^3 + 11s^2 + 14s + 10 = ((s+1)^2 + 1)((s+1)^2 + 4)$$
]

Consider the following boundary value problem in the range of $0 \le x \le 1$:

$$y''(x) + y(x) = \Lambda(x),$$

 $y(0) = 0, y(1) = 0$

Here

$$\Lambda(x) = 1 - 2 * |x - \frac{1}{2}| \text{ for } 0 \le x \le 1$$

(A) (5%) $\Lambda(x)$ can be expanded into a sine series as follows:

$$\Lambda(x) = \sum_{m=1}^{\infty} c_m \sin\left[m \pi x\right]$$

Please determine the solution y(x) in the range of $0 \le x \le 1$ in terms of c_m , $m=1,2,...\infty$.

(B) (5%) Please determine the value of c_1 .