類組:電機類 科目:訊號與系統(300B)

共三頁第__頁

 $- \cdot (15\%)$

Consider a discrete-time system with input x[n] and output y[n]. Show that the system is linear and time-invariant if and only if there exists a signal h[n] such that y[n] = x[n] * h[n] for all possible pairs of x[n] and y[n], where * denotes the operator taking convolution.

二、(10%)

- (-) (5%) Consider a continuous-time linear and time-invariant (LTI) system with input x(t) and output y(t). Given the frequency response $H(j\omega)$ of the system, express the Fourier transform of y(t) in terms of $H(j\omega)$ and the Fourier transform of x(t). Prove your answer.
- ($\stackrel{\frown}{}$) (5%) An LTI system is said to have phase lead at a particular frequency $\omega = \omega_0$ if, for the input $e^{j\omega_0 t}$, the phase of the output will exceed, or lead, the phase of the input. Similarly, an LTI system is said to have phase lag at a particular frequency $\omega = \omega_0$ if, for the input $e^{j\omega_0 t}$, the phase of the output will lag the phase of the input. Consider two systems with the following frequency responses:

(i)
$$H_1(j\omega) = \frac{1 + j(\omega/5)}{1 + j(5\omega)}$$
 (ii) $H_2(j\omega) = \frac{1 + j(5\omega)}{1 + j(\omega/5)}$.

Which has phase lead at any positive frequencies?

三、(8%)

There is a continuous-time periodic signal x(t) with fundamental period T and its one-period signal is $\hat{x}(t)$ (i.e., $\hat{x}(t)$ is only with one cycle of x(t) and aperiodic). Below is the magnitude spectrum of $\hat{x}(t)$ where $\omega_M = \frac{4\pi}{T}$.

Plot the magnitude of Fourier series coefficients of x(t).

四、(7%)

Given a discrete-time periodic signal x[n], below are the plots (see NEXT page) of half (i.e., the positive frequency part or positive k part) of the magnitude (left plot) and phase (right plot) of its Fourier series coefficients within one fundamental period N (N=10) in frequency domain. x[n] is real. Find x[n].

類組:電機類 科目:訊號與系統(300B)

共 三頁第 二頁

五、(15%)

Given a zero-mean Gaussian pulse defined as follows.

$$x(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-t^2}{2\sigma^2}}.$$

- (-) (8%) Find X(0) ($X(j\omega)$ is the Fourier transform of x(t)).
- (=) (7%) Find its Fourier transform spectrum $X(j\omega)$.

(Hint:
$$\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}.$$
)

六、(5%)

Determine whether the following signals are periodic, and for those are, find the fundamental period.

(-)
$$(3\%) x(t) = 2 \cos\left(\frac{2\pi t}{3}\right) + 3\cos\frac{2\pi t}{7}$$

$$(=)$$
 (2%) x[n] = $\cos^2(\frac{\pi}{4}n)$

七、(9%)

Consider the sampling system depicted in the flowing figure (see NEXT page), suppose $x(t) = \cos(w_0 t + \theta)$ and $w_s = \frac{2\pi}{Ts}$. LPF($\frac{w_s}{2}$) denotes the ideal rectangular low-pass filter with a unit gain and a cut-off frequency of $\frac{w_s}{2}$. Determine the output signal $x_r(t)$ at the conditions of different sampling rate.

$$(-)$$
 (3%) $w_0 = \frac{w_s}{3}$

$$(=)$$
 (3%) $w_0 = \frac{3 w_s}{4}$

$$(\Xi)$$
 (3%) $w_0 = \frac{7 w_s}{6}$

台灣聯合大學系統 111 學年度碩士班招生考試試題

類組:電機類 科目:訊號與系統(300B)

共_三頁第_三頁

八、(6%)

For the signal $x(t) = e^{-6t}u(t) * \frac{\sin(Wt)}{\pi t}$, sampled with sampling interval $T_s = ?$, which guarantee that there will be no aliasing. * denotes the operator taking convolution.

九、(10%)

A system has the indicated transfer function $H(s) = \frac{2s^2 + 2s - 2}{s^2 - 1}$. Determine the system impulse response, assuming that

- (-) (4%) the system is causal.
- (=) (4%) the system is stable.
- (三) (2%) Can the system be both causal and stable? (Answer YES or NO)

十、(15%)

Consider the below causal LTI system:

- (-) (7%) Find the transfer function (i.e., H(z)).
- (=) (5%) Find the impulse response (i.e., h[n]).
- (Ξ) (3%) Discuss the stability of the system.

