

In the solution sheet, indicate clearly the problem number, write clearly and logically.

1. (15%) Suppose that $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R} . Show that

$$\limsup_{n \to \infty} \sqrt[n]{|x_n|} \le \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}.$$

- 2. (15%) A set $A \subseteq \mathbb{R}^n$ is said to be dense in $B \subseteq \mathbb{R}^n$ if $B \subseteq \operatorname{cl}(A)$, here $\operatorname{cl}(A)$ denotes the closure of the set A (or you can use an ϵ -version of the definition of density if you know it). If A is dense in \mathbb{R}^n and U is open, prove that $A \cap U$ is dense in U.
- 3. (20%) Let (M,d), (N,d) be metric spaces and $K \subset M$ be a compact set. Supose $f: K \to N$ is continuous, prove that f is uniformly continuous on K. If you don't know what a metric space is, you can treat them as \mathbb{R}^n . However, your proof must make use of the general property of the compactness of K and the continuity of f.
- 4. a) (10%) Let (M, d) be a metric space and $f_k : M \to \mathbb{R}^n$ be a sequence of continuous function. Suppose f_k converge uniformly to f on M. Prove that f is also continuous on M.
 - b) (5%) Give an example showing (and write the proof for it) that this is not true if the f_k are just continuous.
- 5. (10%) True or false? If you think the following statement is false, give a counter-example (and prove that your example works) and if you think that it is true, prove it. Let $A \subset \mathbb{R}^n$ be an open set and $f: A \to \mathbb{R}$, $x_o \in A$, $\vec{n} \in \mathbb{R}^n$ is a unit vector. Suppose f is differentiable in every direction \vec{n} at x_o , then f is differentiable at x_o .
- 6. a) (10%) Let f(x,y) be a real-valued function on \mathbb{R}^2 , f is of class \mathcal{C}^1 , $\frac{\partial^2 f}{\partial x \partial y}$ exists and continuous. Show that $\frac{\partial^2 f}{\partial y \partial x}$ exists, and

$$\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}.$$

- b) (5%) Give an example and provide computations for it to show that if none of $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$ are continuous, then $\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$.
- 7. (10%) Let $f:[a,b]\to\mathbb{R}^n$ be such that f has at most a finite number of discontinuities. Prove that f is Riemann integrable.