台灣聯合大學系統 95 學年度學士班轉學生考試命題紙

頁 *請在試卷答案卷(卡)內作答 科目 高等微積分 032 頁第 類組別

- (1) (20%) In the following each statement, is it true or false? If it is true, prove it. If your answer is false, give an example.
 - (a) If x_n satisfies $|x_{n+1} x_n| < \frac{1}{5^n}$, then x_n converges.
 - (b) If x_n satisfies $|x_{n+1} x_n| < \frac{1}{\sqrt{n}}$, then x_n is convergent.
 - (c) If x_n is a monotone increasing sequence such that $x_{n+1} x_n \leq \frac{1}{n}$, then x_n converges.
- (2) (20%) Let $Q^c = R \setminus Q$, where Q is the set of all rational numbers.
 - (a) Is $Q^c \cap [0,1]$ a compact set? Prove your answer.
 - (b) Let

$$f(x) = \begin{cases} x, & \text{if } x \in Q^c; \\ p \sin \frac{1}{q} & \text{if } x = \frac{p}{q}, \end{cases}$$

where p and q are integers such that (p,q)=1. At what points is f continuous?

(c) Let

$$g(x) = \begin{cases} 0 \text{ if } x \in Q^c \\ \frac{1}{q} \text{ if } x = \frac{p}{q} \text{ in lowest terms.} \end{cases}$$

Prove that f is continuous on Q^c and discontinuous otherwise.

- (3) (20%) Compute the following limits.

 - (a) $\lim_{n \to \infty} \sum_{k=1}^{n} (n^2 + k^2)^{\frac{-1}{2}};$ (b) $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, \text{ where } p > 0.$
- (4) (20%) Let $F(\mathbf{x}, y)$ be a function of class C^1 on some neighborhood of a point $(\mathbf{a}, b) \in$ $\mathbb{R}^n \times \mathbb{R}$. Suppose that $F(\mathbf{a}, b) = 0$ and the partial derivative $\partial_y F(\mathbf{a}, b) \neq 0$. Prove that there exist positive numbers r_0, r_1 such that the following conclusions (A) and (B) are valid:
 - (A) For each x in the ball $||\mathbf{x} \mathbf{a}|| < r_0$ there is a unique y such that $|y b| < r_1$ and $F(\mathbf{x}, y) = 0$. We denote this y by $f(\mathbf{x})$; in particular, $f(\mathbf{a}) = b$.
 - (B) The function f thus defined for $||\mathbf{x} \mathbf{a}|| < r_0$ is of class C^1 , and its partial derivatives are given by

$$\partial_j f(\mathbf{x}) = -\frac{\partial_j F(\mathbf{x}, f(\mathbf{x}))}{\partial_u F(\mathbf{x}, f(\mathbf{x}))}, j = 1, 2, \dots, n.$$

- (C) Suppose F(x,y) is a C^1 function such that F(0,0)=0. What conditions on Fwill guarantee that the equation F(F(x,y),y)=0 can be solved for y as a C^1 function of x near (0,0)?
- (5) (20%) Let $f_n(x) = xe^{-nx}, x \in [0, \infty), n = 0, 1, 2, \dots$
 - (a) Show that $f(x) = \sum_{n=0}^{\infty} f_n(x)$ exists. Compute f explicitly. (b) Is f continuous?

 - (c) Find a suitable set on which the convergence is uniform.
 - (d) May we differentiate term by term on $(0, \infty)$? Why?