Linear Algebra

- 1. (15%) Let T be a linear transformation from R^n to R^n . Let ν be a vector in R^n with $v \neq 0$. Show that there exists a polynomial p(x) such that p(T)v = 0.
- 2. (15%) Let $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ be a 4×4 matrix over the complex numbers. Find all

eigenvalues of A.

- 3. (15%) Let λ and μ be two distinct eigenvalues of a symmetric matrix A. Let μ and v be eigenvectors associated with λ and μ respectively. Show that u and v are orthogonal.
- 4. (15%) Let T be a linear transformation from a vector space V to a vector space W. Let P and Q be subspaces of V and W respectively. Show that T(P) and $T^{-1}(Q)$ are subspaces of W and V respectively.
- 5. (15%) Let $S = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 + x_2 + x_3 + x_4 + x_5 = 0, \quad x_1 - x_2 - x_3 + x_4 - x_5 = 0\}.$ Find an orthonormal basis for the space S.
- 6. (15%) Find the inverses of the following matrices if it is possible.

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$

7. (10%) Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 & 3 \\ -1 & -2 & 2 & 1 & 2 & 3 \\ 0 & 0 & 5 & 2 & 4 & 6 \\ 2 & 4 & 6 & 2 & 4 & 6 \\ 1 & 1 & 1 & 2 & 2 & 6 \end{bmatrix}$$
. Find the rank of A .