科目:高等微積分

Denote by \mathbb{R} the set of all real numbers, [a,b] be a bounded closed interval in \mathbb{R} .

I. (10%) Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, $x \neq y$. Define the line segment

$$L(x,y) = \{tx + (1-t)y : t \in [0,1]\}.$$

Prove that the line segment L(x, y) is a connected set in \mathbb{R}^n .

- 2. (15%) (a) Let $f : [a, b] \to \mathbb{R}$ be bounded on [a, b]. Give a definition for the function f to be Riemann integrable on [a, b].
- (b) Prove that a monotone function f on [a, b] is Riemann integrable.
- 3. (20%) Let $f:[a,b] \to \mathbb{R}$ be increasing on [a,b]. Prove that f has at most countably many points of discontinuity on [a,b].
 - 4. (20%) (a) Find $\lim_{n\to\infty} (1+\frac{1}{n})^{n^2} e^{-n}$.
 - (b) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} (x-1)^n.$$

- 5. (20%) (a) Let $D \subset \mathbb{R}$ and $f_n : D \to \mathbb{R}$, $f : D \to \mathbb{R}$. Give the definitions that " f_n converges to f pointwise on D" and that " f_n converges to f uniformly on D".
- (b) Let $f_n = x^n$ for $x \in [0,1)$. Find $f: [0,1) \to \mathbb{R}$ such that $f_n \to f$ pointwise on [0,1). Does f_n converge uniformly on [0,1)? Prove your answer.

Note: You may use the inequality $(1+\theta)^n \ge 1 + n\theta$ for all positive n and $\theta \ge -1$.

- 6. (15%) (a) Let $D \subset \mathbb{R}^n$ and $f: D \to \mathbb{R}^m$. For $x \in D$ give the definition that f is differentiable at x.
 - (b) Let

$$\begin{cases} f(x,y) = \frac{x^2y}{x^2 + y^2} & \text{for } (x,y) \neq (0,0), \\ f(0,0) = 0. \end{cases}$$

Prove that f is not differentiabe at (0,0).