### 博碩士論文 101221020 完整後設資料紀錄

 DC 欄位 值 語言 DC.contributor 數學系 zh_TW DC.creator 童鵬哲 zh_TW DC.creator Peng-che Tung en_US dc.date.accessioned 2015-7-27T07:39:07Z dc.date.available 2015-7-27T07:39:07Z dc.date.issued 2015 dc.identifier.uri http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=101221020 dc.contributor.department 數學系 zh_TW DC.description 國立中央大學 zh_TW DC.description National Central University en_US dc.description.abstract 我們討論的是Calderón-Zygmund算子在weighted Carleson measure spaces CMO^p_w(R^n)上的有界性。而這篇文章的主要目的，是證明了Calderón-Zygmund算子T，若是符合了T^∗1 = 0以及T的kernel有著的光滑性質的話，則在n/(n+ε) < p ≤ 1及w ∈ Ap(1+ε/n)的條件下， 算子T在CMO^p_w(R^n)是有界的。而另一方面，我們利用以上的證明手法，我們也可以得到對所有0 < p < ∞，單參數奇異積分算子在CMO^p_w(R^n)的有界性。 zh_TW dc.description.abstract We consider the Calderón-Zygmund operators on weighted Carleson measure spaces CMO^p_w(R^n). Our main purpose is to show that the Calderón-Zygmund operators T which satisfy T^∗1 = 0 and ε be the reqularity exponent of the kernel of T, then these operators are bounded on CMO^p_w (R^n) provided by n/(n+ε) < p ≤ 1 and w ∈ Ap(1+ε/n). Using the same argument above, we can also abtain the boundedness of one-parameter singular integral operator T on CMO^p_w for 0 < p < ∞ . en_US DC.subject 加權CMO空間 zh_TW DC.subject Calderón-Zygmund 算子 zh_TW DC.subject Calderón-Zygmund operators en_US DC.subject Carleson measure spaces en_US DC.subject CMO en_US DC.subject Ap weight en_US DC.subject Hardy spaces en_US DC.subject boundedness en_US DC.subject one-parameter singular integral operator en_US DC.subject weighted Carleson measure spaces en_US DC.subject Hp en_US DC.title Calderón-Zygmund operators on weighted Carleson measure spaces zh_TW dc.language.iso zh-TW zh-TW DC.title Calderón-Zygmund operators on weighted Carleson measure spaces en_US DC.type 博碩士論文 zh_TW DC.type thesis en_US DC.publisher National Central University en_US