### 博碩士論文 101221024 完整後設資料紀錄

 DC 欄位 值 語言 DC.contributor 數學系 zh_TW DC.creator 謝孟萍 zh_TW DC.creator Hsieh, Meng-Ping en_US dc.date.accessioned 2014-7-2T07:39:07Z dc.date.available 2014-7-2T07:39:07Z dc.date.issued 2014 dc.identifier.uri http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=101221024 dc.contributor.department 數學系 zh_TW DC.description 國立中央大學 zh_TW DC.description National Central University en_US dc.description.abstract 令G為一個圖(graph)，若G的邊(edges)可分解成t個同構之子圖，則此t個子圖稱為G的t-split，且稱G是可t分解的(t-splittable)。 在這個論文裡，我們證明了以下的結果。 一、 設Q為一個重邊數為2，且總邊數可被3整除的多重路徑(multipaths)，則Q為可三分解的。 二、 設C為一個重邊數為2，且總邊數可被3整除的多重圈(multicycles)，則C為可三分解的。 zh_TW dc.description.abstract Let G be a graph and t be a positive integer. A t-split of G is a partition of the edges of G into t isomorphic subgraphs. A graph is said to be t-splittable if it has a t-split. In this thesis we prove the following results. Theorem. Let Q be a multipath with multiplicity 2 such that jE(Q)j=0 (mod 3). Then Q is 3-splittable. Theorem. Let C be a multicycle with multiplicity 2 such that jE(C)j=0 (mod 3). Then C is 3-splittable. en_US DC.subject 圖形三分解 zh_TW DC.subject 3-split en_US DC.title The 3-split of multipaths and multicycles with multiplicity 2 en_US dc.language.iso en_US en_US DC.type 博碩士論文 zh_TW DC.type thesis en_US DC.publisher National Central University en_US