dc.description.abstract | Abstract
LED (Lighting Emitting Diode) is a kind of solid cold light source, which is the fourth generation lighting source after filament lamp, fluorescent lamp and high pressure sodium lamp. It has been widely applied in lighting and backlight field due to its advantages, such as energy conservation and environmental protection, high LE, fast response, small volume, light weight, and long life span, etc. QDLED (Quantum Dots Light-Emitting Diode) is a new luminescent device that packages quantum dots in LED, in which quantum dot is a new light conversion material, featuring adjustable spectrum, narrow half-wave width, and high quantum yield, etc. It can enable QDLED to show lights of high color rendering index, high saturation and wide color gamut, becoming an upsurge in research and application in the lighting and backlight field in recent years.
The contents of this paper are as follows:
(1) The principle of the quantum dot phosphors and the advantages of the relatively traditional LED were introduced, the research status of the quantum dot phosphors and their packaging were summarized, the key challenges in the material and packaging field were stated and the ways to improve the performance and find the most matching packaging structure were explored.
(2) Optimization of the packaging structure of the quantum dot phosphors. Five packaging structures: air gap type, silicon lens type, silicon filling type, glass gap type and sulfur resistance coating type were packaged and compared. Aiming at obtaining a packaging structure with lowest temperature and highest thermal stability and reliability, we found that the glass gap type was the most matching one. Compared with the traditional silicon filling type packaging, the light efficiency of the glass gap type was fairly consistent. When the glass gap type was lit at the current of 300mA, its highest temperature was 27.9℃, while it’s 29.9℃ for the silicon filling type. It was 40.8% lower than the silicon filling type in the temperature rise of the quantum dot fluorescent diaphragm. Its luminance maintenance rate was 5.6% and 3.5% higher than the silicon filling type in the wet high temperature operating life (WHTOL) and the high temperature operating life (HTOL) experiments respectively, and 41.4% higher especially in terms of the sulfur resistance.
In this experiment, a packaging structure with the lowest temperature and highest reliability was obtained, and it was consistent with the verification results of the heat calculation. It provides a feasible packaging thought for the quantum dot phosphor. | en_US |