博碩士論文 101329008 完整後設資料紀錄

DC 欄位 語言
DC.contributor材料科學與工程研究所zh_TW
DC.creator羅旭峰zh_TW
DC.creatorXu-Feng Luoen_US
dc.date.accessioned2014-8-15T07:39:07Z
dc.date.available2014-8-15T07:39:07Z
dc.date.issued2014
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=101329008
dc.contributor.department材料科學與工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究以Staudenmaier 法和熱還原法製備石墨烯粉體,並以簡易升溫速率調控方式創造孔洞形貌,以調整還原溫度改變官能基含量。將其應用於鈉離子電池之負極材料,於1 M 的NaClO4 有機電解液中測試其儲存鈉離子之電化學特性。首先探討還原溫度之影響:於1100 oC 下還原製備得之石墨烯 (HGNS-1100),呈現僅147 mAh/g 之可逆電容值 (於0.03 A/g)。但300 oC 下還原製備得之石墨烯 (HGNS-300)於相同條件下可得到213mAh/g 的高可逆電容值。同時具有優異的高速充放電能力,於5、10 及20 A/g 之速率下可得104、83 及58 mAh/g 之電容值。這是由於含氧官能基能夠增加層間距和表面活性位置,藉此提升儲存鈉離子之容量。後續探討孔洞形貌之影響:HGNS-300 具有44.6%之高速電容維持率,於相同條件下GNS-300 (不具孔洞形貌) 僅38.6 %之維持率,顯示孔洞形貌有利縮短鈉離子擴散路徑,進一步優化高速維持率。循環壽命方面,HGNS-300 在100 圈充放電後,具有70 %的電容維持率。 為了進一步探討HGNS-300 優異電化學表現之原因,本研究以XPS 探討HGNS-300 電極於不同鈉化/去鈉化電位之表面性質變化,證實於2~0.4 V 之電位區間,鈉離子會儲存於表面活性位置,此活性位置主要來自於表面含氧官能基,其反應式為:>C=O + Na++ e- ↔ >C-O-Na。再經由同步輻射XRD 探討HGNS-300 電極不同鈉化/去鈉化電位之結構變化,可證實其鈉化過程中會於電位低於0.4 V 開始進行插層反應,將鈉離子儲存於碳層間。由於HGNS-300 兼具插層機制與表面氧化還原機制,因此於電容量及高速電容維持率皆有優異的表現。zh_TW
dc.description.abstractHoley reduced graphene oxide (RGO) is prepared by a Staudenmaier method, followed by a thermal reduction process. Amounts of functional groups on RGO can be controlled by the reduction temperature. In this study, electrochemical properties of the RGO electrodes are tested in an ethylene carbonate/diethyl carbonate mixed electrolyte containing 1 M NaClO4. The RGO reduced at 1100 oC (HGNS-1100) with a low content of functional groups shows a reversible capacity of 147 mAh/g (at 0.03 A/g). However, the RGO reduced at 300 oC (HGNS-300; with a higher surface functional group amount) shows a clearly higher capacity of 213 mAh/g at the same condition. With increasing the charge-discharge to 5, 10 and 20 A/g, a capacity of as high as 104, 83 and 58 mAh/g can be obtained, indicating an excellent rate capability. The functional groups may increase d-spacing and provide reaction sites for sodium ion storage, enhancing charge/discharge capacity. In addition, holey morphology can shorten the path of Na-ion diffusion, optimizing the rate capability. HGNS-300 shows the higher rate capability 44.6 %. GNS-300 (without holey morphology) only has 38.6 % at the same condition. It is also found that the RGO-300 electrode exhibits a capacity retention ratio of approximately 70 % after 100 cycles. In order to study the reason of excellent electrochemical performance of HGNS-300, the methods of ex-situ XRD and ex-situ XPS are used to analyze the structure and surface properties change during charge/discharge process. It confirms that Na-ion will insert to carbon layers in the lower sodiation voltage (0.4~0.3 V). In the higher sodiation voltage 2~0.4 V, Na-ion will storage at surface active site from surface functional group. The reaction mechanism is “>C=O + Na+ + e- ↔ >C-O-Na”. Due to the two kinds of mechanism that mention in above paragraph, HGNS-300 can own both high capacity and excellent rate capability.en_US
DC.subject鈉離子電池zh_TW
DC.subject負極材料zh_TW
DC.subject石墨烯zh_TW
DC.subject官能基zh_TW
DC.subject孔洞形貌zh_TW
DC.subjectsodium-ion batteriesen_US
DC.subjectanodeen_US
DC.subjectholey graphene nanosheetsen_US
DC.subjectfunctional groupsen_US
DC.title石墨烯與碳系材料應用於鈉離子電池負極之性質研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleGraphene and carbon-based materials as anodes for sodium-ion batteriesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明