博碩士論文 101356007 完整後設資料紀錄

DC 欄位 語言
DC.contributor環境工程研究所在職專班zh_TW
DC.creator葉佳紋zh_TW
DC.creatorChia-Wen Yehen_US
dc.date.accessioned2014-7-29T07:39:07Z
dc.date.available2014-7-29T07:39:07Z
dc.date.issued2014
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=101356007
dc.contributor.department環境工程研究所在職專班zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究主要分析半導體封測廠空調水側系統節能的成效,以探討冰水主機、冰水泵浦、冷卻水泵浦及冷卻水塔散熱風扇,依不同天候條件及空調負載變化下,透過電腦計算運轉耗電狀態,控制空調水側系統設備於最佳化運轉模式,瞭解其在節能運轉操作下之不同季節的節能效率,以及各設備的耗電量。 在實驗的過程中利用數學模式最佳化耗電計算,分配冰水主機、冰水泵浦、冷卻水泵浦、冷卻水塔的運轉參數,分析運算以控制各設備使總體耗電為最小,而且都以變頻器控制轉速,求得在符合負載需求下之最佳運轉組合,藉由長期的節能效率驗證的過程,確保實驗結果的耗電量之準確性,作為節省電費成果的計算依據及投資節能工程的評估。 實驗結果顯示空調水側系統消耗之冷凍噸數從2013年8月到2013年12月是隨著外氣濕球溫度降低而減少,但在12月時的冷凍噸數與外氣濕球溫度是沒有正相關性;總節能效率分析之平均節能率為17.75 %,夏季8月份之節能率11.58 %最低,冬季12月份節能效率20.49 %最高,因夏季的冰水機之耗電量高而影響整體的節能率,亦可驗證冰水機負載受外氣濕球溫度影響,在非常高的外氣濕球溫度條件下,冷卻水塔無法進一步降低32 ℃冷卻水溫的狀況下,因此影響了節能模式運轉的省電空間。 zh_TW
dc.description.abstractThis study primarily analyzes the energy-saving effectiveness of the water side of air-conditioning system in a semiconductor packaging and testing plant. Computer was used to calculate the energy consumption, to maintain optimized operating mode, to analyze the energy-saving effectiveness, and to understand the energy consumption of the chiller, chilled water pump, cooling water pump, and cooling tower fan operating under various weather conditions and air-conditioning load factors. Mathematical model was used in this study to calculate the optimized power consumption of the chiller, chilled water pumps, cooling water pumps, and cooling towers. Algorithms and frequency converters were used to control each component so that the overall power consumption was kept to a minimum, and to ensure optimal combined operations appropriate for a given load condition. A long-term energy efficiency verification process was undertaken to ensure that results of calculations were accurate and were appropriate for use as assessments of electricity savings and investment decisions for energy-saving projects. Study data showed that from August 2013 to December 2013, the refrigeration tonnage of the water side air-conditioning system decreased as outside air wet bulb temperature decreased. However, for December, the decrease in tonnage was not in direct proportion of the outside air wet bulb temperature. Analysis of the overall energy-saving efficiency showed an average energy-saving rate of 17.75 %, lowest in August (during summer) at 11.58 %, and highest in December (during winter) at 20.49 %. During summer, the energy consumed by the chiller was at the highest; affecting the overall energy-efficiency performance. This proved that the chiller′s power consumption load is affected by the outside air wet bulb temperature. At very high outside air wet bulb temperature, Cooling towers can not further reduce the cooling water temperature of 32 ℃ situation; thereby affecting the operation of the power-saving mode. en_US
DC.subject空調水側系統節能zh_TW
DC.subject最佳化節能模式zh_TW
DC.subject外氣濕球溫度zh_TW
DC.subjectair conditioning system water-side energy efficiencyen_US
DC.subjectoptimized power-saving modeen_US
DC.subjectthe outside air wet bulb temperatureen_US
DC.title半導體封測廠空調水側系統節能最佳化運轉探討-以某封測廠為例zh_TW
dc.language.isozh-TWzh-TW
DC.titleSemiconductor packaging and testing plant water side of air conditioning systems to optimize energy saving operation - Taking an example of a packaging and testing plant.en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明