博碩士論文 101522068 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator顏孟加zh_TW
DC.creatorMeng-Jia Yanen_US
dc.date.accessioned2014-7-25T07:39:07Z
dc.date.available2014-7-25T07:39:07Z
dc.date.issued2014
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=101522068
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstractFacebook為目前全球最大的社交網路,其每日活躍用戶總數超過8.02億人。不幸的是,Facebook也成為攻擊者們的目標,攻擊者利用Facebook傳播大量的釣魚訊息,並從中獲利。其中一個被濫用來散播訊息的管道為社團(Group)服務,由於社團邀請機制能夠不經朋友的允許將朋友加入社團中,一旦攻擊者盜用了正常使用者的帳號,便能迅速地將這些使用者的朋友們通通加入這些惡意社團,導致這些朋友也成為了受害者之一。 本篇論文著重在偵測Facebook中惡意散播垃圾訊息的社團,這些社團大多利用販賣便宜的衣服、電子產品、藥物等資訊,試圖吸引受害者提供個人資訊,甚至不透過大型線上拍賣網站的認證步驟,直接要求受害者轉帳。使用者可以透過Facebook官方回報機制檢舉這些擾人的社團,但是其效率並不高,在我們的實驗過程中發現,大部分的惡意社團至少存活了5個月以上。 我們開發了一個應用程式-Itus,目的是自動、即時地為使用者找出已經加入的社團中是否存在著惡意社團。除了使用Facebook API取得使用者的社團資訊、成員互動程度之外,更進一步地分析成員間的邀請紀錄,將被攻擊者濫用的邀請機制轉化為偵測方式。我們使用support vector machine進行資料訓練及預測,實驗結果顯示邀請紀錄能夠有效地改善Itus的準確率,且誤判率在目前存在的自動偵測惡意社團機制中是最低的。 zh_TW
dc.description.abstractFacebook is the largest online social network, and total number of daily active users on Facebook is more than 802 million in March 2014. Unfortunately, attackers are also expanding their territory to Facebook to propagate spam. One of the ways to propagate spam on Facebook is using Facebook Groups. Group’s members can invite their friends to join the Group without invitees’ permission. However, questions then arise about the friendly invitation mechanism. Using fake or compromised accounts, attackers can spread invitation to all friends, that is, not only the compromised account, but all his friends become the victims. Then the victims start to receive notifications by default when any member posts in the Group’s Wall, even though they have not visited these Groups. The Facebook report mechanism cannot effectively detect spamming Groups. Many active spamming Groups have survived for five months at least. In this paper, we develop Itus to identify spamming Groups and protect Facebook users from them. In addition to extracting the static features from Facebook Groups, we are concerned with relationship between members and social activities in a Group. This work is hard to implement because we have to crawl the Group’s invitation records manually to find out the relations of members which Facebook does not provide due to the privacy concern. The invitation records are major contributors to improve accuracy of our mechanism. Experimental results employed a support vector machine (SVM) on identifying spamming Groups, showing that the best total error rate of Itus is 3.27%. In the future, we will try to cooperate with Facebook, accessing these sensitive data which have become anonymous to prevent users’ personal information from being breached and illegally used. en_US
DC.subject社交網路zh_TW
DC.subject臉書zh_TW
DC.subject購物社團zh_TW
DC.subjectonline social networken_US
DC.subjectFacebooken_US
DC.subjectSpamming Groupen_US
DC.titleItus: Behavior-based Spamming Groups Detection on Facebooken_US
dc.language.isoen_USen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明