博碩士論文 103222024 完整後設資料紀錄

DC 欄位 語言
DC.contributor物理學系zh_TW
DC.creator吳淑蓉zh_TW
DC.creatorShu-Rong Wuen_US
dc.date.accessioned2017-1-24T07:39:07Z
dc.date.available2017-1-24T07:39:07Z
dc.date.issued2017
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103222024
dc.contributor.department物理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract利用822.5 nm穩頻雷射探測銫原子6S-8S躍遷譜線並量測其絕對頻率與線寬。透過電光調制器將雷射頻率鎖在銫原子氣室的交叉線上,藉由改變電光調制的訊號頻率進而改變雷射頻率並得到躍遷譜線。量測一處於高真空環境的銫原子氣室其譜線訊號,得到此氣室躍遷絕對頻率及線寬860 kHz。   將一玻璃銫原子氣室置於高壓氦氣中,並隨時探測6S-8S躍遷譜線,其線寬增加、躍遷中心頻率藍移。並得到6S-8S躍遷中心頻率偏移量與線寬增加量的比值為0.24。   與本研究團隊於2012年所量測的10個銫原子譜線相比對,發現其躍遷中心頻率偏移量與線寬增加量的比值與氦氣影響之值相近。本實驗再測量其中兩個銫原子氣室之譜線,其線寬分別增寬185 kHz及228 kHz,躍遷中心頻率分別增加45.3 kHz及46.8 kHz,其躍遷中心頻率偏移量與線寬增加量的比值與氦氣影響之值接近,因此銫原子氣室很有可能由於氦氣滲透玻璃影響躍遷譜線。 zh_TW
dc.description.abstractCesium atom 6S-8S hyperfine transition was observed by 822.5 nm frequency-stabilized laser and its absolute frequency and linewidth were determined. The laser frequency is lock to the crossover line of cesium transition by the electro-optic modulator. The laser frequency is changed by changing the frequency of the electro-optic modulation and the relevant fluorescence is obtained. The ultimate transition frequency and linewidth were determined under a high-vacuum (?10?^(-10)Torr) system where the residual gas could be constantly pumped out by an ion-pump. A cesium glass cell was implemented in 1.75 atm helium gas and the 6S-8S transition line was monitored. The linewidth was increased and the center frequency of transition was blue shifted. The ratio of the center frequency shift with respect to the linewidth broadening of the 6S-8S transition is 0.24. The value of “0.24” is the same as what we have concluded in 2012 via the observation of 10 cesium cells. We future observed the variation of spectral linewidth and frequency for two cesium cells, namely, cell #2 and cell #5. We found that, from 2012 to 2016, the frequency and linewidth of cell #2 increased with 45.3 kHz and 185 kHz, respectively. The frequency and linewidth of cell #2 increased with 45.3 kHz and 185 kHz, respectively. The ratios of the center frequency shift to the linewidth broadening are also near 0.24, which was strongly suspected as were caused by similar helium diffusion from atmosphere. en_US
DC.subject雷射zh_TW
DC.subject二級光鐘zh_TW
DC.subjectCesiumen_US
DC.subjectsecondary optical clocken_US
DC.title銫原子穩頻822奈米二級光鐘zh_TW
dc.language.isozh-TWzh-TW
DC.titleCesium-stabilized 822-nm secondary optical clocken_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明