博碩士論文 103223034 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學學系zh_TW
DC.creator張佑如zh_TW
DC.creatorYu-Ju Changen_US
dc.date.accessioned2016-7-26T07:39:07Z
dc.date.available2016-7-26T07:39:07Z
dc.date.issued2016
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103223034
dc.contributor.department化學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文分為兩部分,第一部分為利用兩種不同特性之高分子材料 (M-2070及ED2003) 分別與具環氧基團之材料聚合,依據不同重量比混摻,並改變其氧鋰比,合成出混摻型有機無機固態高分子電解質。接著探討鋰鹽濃度對於高分子電解質的性質影響及鋰離子與高分子鏈段的作用情形:利用熱重分析儀 (TGA) 觀察其熱穩定性;以X-ray粉末繞射儀 (Powder X-Ray Diffractometer) 與微差掃描熱卡計 (DSC) 研究高分子鏈段結晶情形;以掃描式電子顯微鏡 (SEM) 分析其表面形態;以傅立葉紅外線吸收光譜儀 (FTIR) 對其結構作鑑定並分析鋰鹽解離程度;以交流阻抗分析儀 (AC Impedance) 測量離子導電度與電化學穩定性;以固態核磁共振光譜儀 (SSNMR) 之13C CP MAS及29Si CP MAS進行結構鑑定,並利用1H-13C 2D WISE與7Li NMR譜寬量測了解鋰離子與高分子鏈段運動性之間的動力學分析研究。比較FTIR、DSC與核磁共振方法其量測結果與離子導電度之趨勢相符,當鋰鹽濃度於此固態電解質達一定程度時,可得到一最佳鋰離子傳遞速率,具有較佳導電度,此固態高分子電解質於30 C下量測其離子導電度可達1.01 × 10-4 S cm-1。 第二部分為將第一部分所合成固態電解質吸附不同種類之液態電解液形成膠態電解質,期望藉由有機溶劑使鋰離子有較佳的傳導效果,以提升離子導電度。接著以澎潤比測試探討膠態電解質吸附各類電解液之吸附情形;以交流阻抗分析儀 (AC Impedance) 測量離子導電度與電化學穩定性,得知此膠態高分子電解質吸附1M LiPF6 in EC/DEC (1:1, v/v) 於30 C下其離子導電度可達到2.04 × 10-2 S cm-1,並可承受約4.2 V之氧化分解電壓;最終將膠態電解質與市售之隔離膜同時吸附1M LiPF6 in EC/DEC (1:1, v/v) 分別組成硬幣型鋰離子電池,探討兩者之電性表現,結果顯示本實驗所合成之膠態電解質具有較佳的充放電循環壽命。zh_TW
dc.description.abstractA new organic-inorganic hybrid electrolyte was synthesized by blending two organic-inorganic hybrid precursors. Two precursors based on reactions of (Ⅰ) triblock co-polymer poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2003) with poly(ethylene glycol) diglycidyl ether (PEGDGE) and followed by co-condensation with (3-Isocyanatopropyl)triethoxysilane (ICPTES), and (Ⅱ) oligo(oxyalkylene)-amines (M-2070) with poly(ethylene glycol) diglycidyl ether (PEGDGE) via condensation. The hybrid electrolytes were obtained by varying the weight percentages of two precursors and LiClO4 salt. The structure and electrochemical properties of the polymer electrolytes were characterized by different of techniques including thermogravi-metric analyzer (TGA), Powder X-Ray Diffractometer, differential scanning calorimetry (DSC), scanning electron spectroscopy (SEM), Fourier transform infrared spectroscopy (FTIR), 13C cross-polarization magic-angle spinning (CPMAS), AC impedance and charge–discharge measurement. The hybrid polymer electrolyte was measured the ionic conductivity value of 1.01 × 10−4 S cm−1 at 30 °C. Multinuclear NMR techniques were used to provide a microscopic view for the specific interaction between the polymer chains and Li+ cations. The results of 2D 1H-13C wide-line separation (WISE) and 7Li static line NMR width measurements found that the mobility of the 7Li cations are strongly related to a dynamic environment created by the polymer chains motion in the amorphous phase. After swelling in different liquid electrolyte solvents, the gel polymer electrolytes were prepared. The swelling ratio and the ionic conductivity of the gel electrolytes were measured with liquid electrolyte solutions, the gel polymer electrolytes immersed in 1M LiPF6 in EC/DEC (1:1, v/v) represents the highest ionic conductivity as 2.04 × 10-2 S cm-1 at 30 °C. This gel electroltyte also had good electrochemical stability up to 4.2 V. Finally, the gel electrolyte compared with commercial separator PP membrane immersed in 1M LiPF6 in EC/DEC (1:1, v/v) applied for charge–discharge measurement of lithium ion batteries. Hence, it can be concluded that this new hybrid polymer system is suitable for use as a gel polymer electrolyte in rechargeable lithium batteries.en_US
DC.subject固態電解質zh_TW
DC.subject鋰電池zh_TW
DC.subjectsolid polymer electrolyteen_US
DC.subjectlithium ion batteryen_US
DC.title以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明