博碩士論文 103282604 完整後設資料紀錄

DC 欄位 語言
DC.contributor物理學系zh_TW
DC.creator娜荷zh_TW
DC.creatorNeha Singhen_US
dc.date.accessioned2021-10-25T07:39:07Z
dc.date.available2021-10-25T07:39:07Z
dc.date.issued2021
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103282604
dc.contributor.department物理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract對位取代的苯基磷酸常被用來吸附於介面形成自組裝單層分子薄膜(self-assembled monolayers, SAMs),以修飾氧化鎳及氧化銦錫電極(ITO) 電洞傳輸層。因此我們可以藉由改變極性不同的末端取代基,造成自組裝單分子膜偶極方向的不同,進而影響介面功函數與能階相對位置。同時,調整末端官能基也能改變單層分子膜表面的潤濕能力。 在本研究中,我們探討自組裝分子薄膜修飾對於兩種不同的電洞傳輸層的钙鈦礦太陽能電池效率的影響。而這兩種不同電洞傳輸層的太陽能電池採用不同製程。在修飾後的氧化鎳上,我們使用旋轉塗佈法製成钙鈦礦薄膜。而在修飾後的ITO上,我們用聚二甲基矽氧烷(PDMS)模轉印法製成钙鈦礦薄膜。經由優化調整後的製程可使其钙鈦礦薄膜之形貌與厚度保持一致,以降低這兩個因素對於太陽能電池效率的影響。 在以氧化鎳電洞傳輸層製成的钙鈦礦太陽能電池中,我們可以發現以自組裝分子薄膜修飾影響了太陽能電池的元件效能。而最能有效提升元件效率的表面修飾為使用末端氰基取代的磷酸形成的自組裝薄膜,其能量轉換效率可高達18.45%。而在以ITO電洞傳輸層製成的钙鈦礦太陽能電池中,元件的開路電壓及能量轉換效率,與其功函數及钙鈦礦太陽能電池中的能階排列有關。而有相對應分子自組裝薄膜修飾過後的ITO能階更接近於钙鈦礦薄膜,其能量轉換效率為13.94%,明顯高於以未修飾的ITO製成的元件:8.64%。之後並藉由其他元件光電性質的量測分析,討論修飾對於元件開路電壓、短路電流,及填充因子的影響。 成功在反轉元件(有/無電洞傳輸層)中植入SAM後,也使用SAM修飾串連電池中的電荷結合層,並使用轉印法製備上電池之鈣鈦礦層,克服下電池被溶解的問題。初步嘗試就成功製備串聯太陽能電池元件並且沒有下層融解的問題.. 2T串聯元件中觀察到的Voc = 1.6V 但Jsc仍有待提升。zh_TW
dc.description.abstractSelf-assembled monolayers of para-substituted phenylphosphonic acids were used to modify the surfaces of nickel oxide hole-transport layer and indium tin oxide electrode in the fabrication of perovskite solar cells. The monolayer was primarily introduced to tailor the work function of these surfaces, depending on the electron-withdrawing or electron-donating nature of the substituent. SAM modification implants a dipole at the surface, which alters the work function. Depending on the functional group at the terminal position of the molecule, the wettability of the surfaces varies. In the case of nickel oxide modification, the spin-coating procedure was used to form the perovskite film, while in the case of ITO, PDMS stamping method was used to transfer-print the perovskite film. The aim was to control the thickness as well as the morphology of the perovskite film so as to minimize the impact of these parameters on the device performance. For nickel oxide-based devices, the modification impacted the device performance such that the best-performing device was observed with electron-withdrawing cyano-substituted phosphonic acid modification, with a maximum power conversion efficiency of 18.45%. For ITO-based devices, the open-circuit voltage of devices with the corresponding SAM molecules is in agreement with the work function alignment of the molecules to the valence level of the perovskite layer. The SAM modified device with energy level closest to the perovskite, shows an efficiency of 13.94%, considerably higher to that of blank with 8.64%. The effect of modification on parameters such as open-circuit voltage, short-circuit current, and fill factor are discussed. With the successful implementation of SAM in an inverted device (with and without hole transport layer), the possibility of SAM modification of recombination layer in a tandem solar is proposed. Stamp-transferring of perovskite layer is used in the top-cell to overcome the problem of dissolution of layers in the bottom cell. Preliminary attempts to fabricate a tandem device, without the dissolution of the underneath layers have been made successfully. A satisfactory Voc of 1.6V is observed in a 2T tandem cell, while the Jsc value has a huge scope of improvement.en_US
DC.subject以自組裝單分子層介面修飾工程應用於鈣鈦礦太陽能電池之研究zh_TW
DC.subjectInterfacial engineering of perovskite solar cell using self-assembled monolayersen_US
DC.title以自組裝單分子層介面修飾工程應用於鈣鈦礦太陽能電池之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleInterfacial engineering of perovskite solar cell using self-assembled monolayersen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明