博碩士論文 103521123 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator林祥zh_TW
DC.creatorXiang Linen_US
dc.date.accessioned2017-10-2T07:39:07Z
dc.date.available2017-10-2T07:39:07Z
dc.date.issued2017
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103521123
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文討論微波多相位時脈產生器積體電路的研製,並針對PIN二極體元件做等效電路模型的建立,再利用所建立的模型設計毫米波切換器及調變器。首先,在第二章使用台積電90 nm互補式金屬氧化物半導體製程設計和實現一個應用在微波頻段的多相位時脈產生器,藉由閉迴路的壓控延遲系統使輸出相位誤差可以進一步改善,並使用類比式相位比較器使電路能夠操作於較高頻。此電路可以有八個不同相位的輸出訊號且操作頻寬為7.5 ~ 10 GHz,當輸入訊號頻率為10 GHz時,其輸出最大相位誤差為4.97˚,且在偏移中心頻1 kHz ~ 40 MHz的範圍內,此電路最高累計之抖動量約為11 fs,電路直流功率消耗為66 mW,晶片面積為0.96 × 0.82 mm2。 第三章使用穩懋(WIN)的砷化鎵(GaAs)製程實現PIN二極體,對PIN二極體做直流與S參數量測,再將量測結果分別萃取二極體等效電路參數,並建立元件的小訊號等效模型。而所建立的等效模型操作頻率範圍從直流到70 GHz,並可藉由電壓控制流過二極體之電流大小及在不同偏壓狀態下二極體的S參數表現。 第四章利用第三章所建立的PIN二極體等效電路模型設計與實現切換器及相位調變器,並將量測結果與模擬結果互相比較,證實所建立的PIN二極體等效模型之可行性。在切換器電路方面分別有單純以二極體串聯設計的單刀雙擲(Single-Pole Double-Throw,SPDT)切換器,利用串並聯二極體設計的單刀單擲(Single-Pole Single-Throw,SPST)及單刀雙擲串並式切換器,利用共平面波導傳輸線(CPW)與二極體匹配設計的單刀單擲與單刀雙擲行進波(Traveling wave)切換器,以及利用四分之一波長傳輸線設計的單刀雙擲切換器。在相位調變器電路方面分別有二進制相位調變器(Binary Phase Shift Keying,BPSK)及正交調變器,皆利用反射式調變器設計。zh_TW
dc.description.abstractDesign and analysis of microwave multi-phase signal source integrated circuits and PIN diode device modeling are presented in this thesis. We also used the PIN diode model to design millimeter-wave switches and modulators. A 10 GHz Multi-phase clock generator using a 90 nm CMOS process is presented in Chapter 2. By utilizing a delay-locked loop (DLL), the phase accuracy of the multi-phase clock generator can be further enhanced. And by utilizing the analog phase detector, the operating frequency of the multi-phase clock generator can be increased. The bandwidth of the multi-phase clock generator is from 7.5 to 10 GHz. The measured maximum phase error is 4.97˚ and the measured rms jitter intergrated from 1 kHz to 40 MHz is 11 fs when the operating frequency is 10 GHz. The total DC power consumption is 66 mW. The chip size is 0.96 × 0.82 mm2. The PIN diode modeling using a WIN GaAs process is presented in Chapter 3. The DC I-V curve and S-parameter of PIN diode are measured. And we extracted the extrinsic and intrinsic parameters of the PIN diode from the measurement result to establish small-signal model. The model for the PIN diode is based on DC to 70 GHz measured S-parameters, and the resulting model has been implemented. The model demonstrates good fidelity to the measured data for DC as well as high-frequency S-parameter analysis over a wide range of bias conditions. The milliter-wave switches and modulators using the user-defined PIN-diode model are presented in Chapter 4. There are six type of switches presented in this chapter. One is designed using series PIN diode for single-pole double-throw (SPDT), and two switches are designed using series-shunt PIN diode for single-pole single-throw (SPST) and SPDT. The SPST and SPDT traveling wave switches using coplanar waveguide (CPW) and a SPDT switch using 1/4λ transmission line are also designed. The binary phase shift keying (BPSK) and I/Q modulator using reflection-type modulator are also presented.en_US
DC.subject多相位時脈產生器zh_TW
DC.subjectPIN二極體zh_TW
DC.subject切換器zh_TW
DC.subject調變器zh_TW
DC.subjectMulti-phase Clock Generatoren_US
DC.subjectPIN Diodeen_US
DC.subjectSwitchen_US
DC.subjectModulatoren_US
DC.title微波多相位時脈產生器與PIN二極體應用於毫米波切換器及調變器zh_TW
dc.language.isozh-TWzh-TW
DC.titleMicrowave Multi-phase Clock Generator and PIN Diode for Millimeter-wave Switches and Modulatorsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明