### 博碩士論文 104221015 完整後設資料紀錄

 DC 欄位 值 語言 DC.contributor 數學系 zh_TW DC.creator 黃冠傑 zh_TW DC.creator Kuan-Chieh Huang en_US dc.date.accessioned 2017-7-7T07:39:07Z dc.date.available 2017-7-7T07:39:07Z dc.date.issued 2017 dc.identifier.uri http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=104221015 dc.contributor.department 數學系 zh_TW DC.description 國立中央大學 zh_TW DC.description National Central University en_US dc.description.abstract 在這篇文章中，我們考慮在R上的函數Φ(x) = (x^2)/2，那麼可以得到擬度量ρ(x, y) = ((x-y)^2)/2 和 section。我們證明了如果R上的任意兩點x, y 滿足ρ(x, y)≧ 1 時就有|D_0HD_0|≦Cρ(x, y)^(-1)的話，則Monge–Ampère 奇異積分算子 H 在關於 section 的非齊次的 Besov 空間是有界的。 zh_TW dc.description.abstract In this paper, we considerΦ(x) = (x^2)/2 on R. Then we haveρ(x, y) = ((x-y)^2)/2 and the section. We show that the Monge–Ampère singular integral operator H is bounded on be the inhomogeneous Besov space associated with these sections if |D_0HD_0|≦Cρ(x, y)^(-1) for any x, y in R, ρ(x, y)≧ 1. en_US DC.subject Monge–Ampère 奇異積分算子 zh_TW DC.subject Besov space en_US DC.subject Monge–Ampère singular integral operator en_US DC.title A note on inhomogeneous Besov space associated with sections en_US dc.language.iso en_US en_US DC.type 博碩士論文 zh_TW DC.type thesis en_US DC.publisher National Central University en_US