博碩士論文 104521069 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator李彥漳zh_TW
DC.creatorYen-Chang Leeen_US
dc.date.accessioned2017-8-21T07:39:07Z
dc.date.available2017-8-21T07:39:07Z
dc.date.issued2017
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=104521069
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract相較於傳統的氮化鋁鎵/氮化鎵異質結構,氮化鋁銦/氮化鎵異質結構具有較高的二維電子氣濃度,使通道片電阻更進一步地降低,有助於降低場效電晶體之導通電阻。但是,過去之文獻顯示,氮化鋁銦異質結構受到較強烈的合金散射與界面粗糙散射的影響,其電子遷移率普遍低於氮化鋁鎵異質結構。在此異質結構中,即使使用氮化鋁間隔層減緩合金散射,其電子遷移率仍然偏低。因此,界面粗糙散射效應的改善應是提升氮化鋁銦異質結構之電子遷移率的首要課題。 本研究之主題為探討有機金屬化學蒸氣沉積法(MOCVD)磊晶條件對異質接面平整度之影響,並據以改善電子遷移率。一般而言,氮化鎵磊晶常用之載氣為氫氣,此研究顯示,在成長通道界面處改以氮氣作為載氣時,可抑制氫氣易引起之熱蝕刻缺陷的產生,有效地降低氮化鋁/氮化鎵通道界面之粗糙度,氮化鋁的表面平坦度可以從0.88 nm降低至0.65 nm。所製備的氮化鋁銦/氮化鋁/氮化鎵異質結構,在二維電子氣濃度高達2.1×1013 cm-2的情況下,電子遷移率仍可高達1360 cm2/V-s,達成通道片電阻低至215 ohm/sq的狀況。藉由磁阻量測之Shubnikov-de Haas oscillations與所萃取之量子散射時間可知,界面粗糙散射仍是此結構最主要之載子散射機制;而且二維電子氣濃度越高,此界面粗糙散射的影響就越大。zh_TW
dc.description.abstractCompared to conventional AlGaN/GaN heterostructures, AlInN/GaN heterostructures have higher two-dimensional electron gas (2DEG) concentrations, which result in lower on-resistance of high electron mobility transistors (HEMTs). However, previous reports show that there exist stronger alloy scattering and interface roughness scattering in AlInN heterostructures. These make electron mobility lower than that in AlGaN heterostructures. The use of an AlN spacer to reduce alloy scattering cannot raise the electron mobility to a level comparable to that observed on AlGaN heterostructures. In order to improve the electron mobility of AlInN heterostructures, reducing interface roughness scattering should be of primary interest as well as importance. This study aims to investigate the effects of growth conditions on the smoothness of the heterojunction during metal-organic chemical vapor deposition (MOCVD) so as to improve the electron mobility in AlInN/AlN/GaN heterostructures. H2 is a typical carrier gas used in the growth of GaN by MOCVD. In this study, N2 carrier gas is used during the growth of GaN/AlN heterojunction to suppress the thermal etching by H2, and effectively reduce the interface roughness. The surface roughness of AlN film desreases from 0.88 nm to 0.65 nm. An AlInN/AlN/GaN heterostrure with electron mobility of 1,360 cm2/V-s is achieved with a 2DEG concentration of 2.13×1013 cm-2, leading to a low sheet resistance of 215 ohm/sq. Quantum lifetimes extracted from Shubnikov-de Haas oscillations of the AlInN/AlN/GaN heterostrures growth with H2 and N2 carrier gas indicate that interface roughness scattering is still the dominant scattering mechanism and it is even more significant in the samples with higher 2DEG concentrations.en_US
DC.subject氮化鎵zh_TW
DC.subject氮化鋁銦zh_TW
DC.subject有機金屬化學蒸氣沉積zh_TW
DC.subject舒勃尼科夫-德哈斯振盪zh_TW
DC.subject電晶體zh_TW
DC.subject電子遷移率zh_TW
DC.subjectGaNen_US
DC.subjectAlInNen_US
DC.subjectMOCVDen_US
DC.subjectShubnikov-de Haas oscillationen_US
DC.subjectHEMTen_US
DC.subjectmobilityen_US
DC.title以氮氣作為載氣改善有機金屬化學蒸氣沉積之氮化鋁銦/氮化鋁/氮化鎵異質結構傳輸特性zh_TW
dc.language.isozh-TWzh-TW
DC.titleImproving the Transport Properties of AlInN/AlN/GaN Heterostructures by Using Nitrogen Carrier Gas in Metal-Organic Chemical Vapor Depositionen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明