博碩士論文 105223051 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學學系zh_TW
DC.creator康芳瑋zh_TW
DC.creatorFang-Weien_US
dc.date.accessioned2018-7-25T07:39:07Z
dc.date.available2018-7-25T07:39:07Z
dc.date.issued2018
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105223051
dc.contributor.department化學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract傳統一維氣相層析技術在分析大氣中複雜的揮發性有機化合物 (Volatile Organic Compound, VOCs)時因分離能力與峰容量有限而無法將其完全分離,而全面二維氣相層析技術 (Comprehensive Two Dimensional GC, GC×GC)利用兩組極性相異的管柱與一組調制器使其具有相當強大的解析能力。GC×GC技術雖然在香水與燃料等液態樣品分析上應用廣泛,對於大氣濃度下VOCs的分析因民眾近年對空氣污染議題日益關注也顯得極具發展研究的價值。本研究結合前濃縮熱脫附儀 (Thermal Desorption Unit, TD)、GC×GC與火焰離子偵測器 (Flame Ionization Detector, FID)建構TD-GC×GC-FID系統以對大氣環境中交通源排放的低濃度VOCs進行有效分離。 調制器 (modulator)是全面二維氣相層析法不可或缺之元件,而利用液態氮的冷凍式調制器因其高靈敏度與實驗參數易於調整等特性使其成為最廣為使用的偵測器。然而如液態氮等液態冷劑的維護所需的龐大人力和物力使GC×GC技術的普及受到限制,因此無需液態氮的氣流式調制器逐漸受到重視。而大多數氣流式全面二維氣相層析法的硬軟體皆為商業化組件,難以變更調制器中管路的孔位設計與尺寸參數。本研究利用兩組SGE SilflowTM分流盤搭上自行設計的孔位配置,建構一套氣流式調制系統並進一步對更細部的參數進行討論與優化,例如系統流路、氣流大小和樣品迴圈規格等。 本研究藉由分析VOCs標準氣體 (包含PAMS和NIEA715.15B)和空氣樣品討論自行組裝TD-GC×GC-FID系統中各項參數的最佳化,參數包含管柱靜相組合、調制參數、氣流大小調整、樣品迴圈與阻抗管規格等。最終優化之重要參數如下:管柱組合為DB-1 (30 m× 0.25 mm × 1.0 μm) × Stabilwax (2m × 0.18 mm × 0.18 μm)、調制周期 (Mp)為三秒、調制占空比為0.15、調制比例於5-7之間、樣品迴圈為25 cm × 0.32 mm O.D.(體積為25μm)、阻抗管參數為1.6 m × 0.18 mm。 本TD-GC×GC-FID系統亦藉由分析包含61種極性組成多元化合物的NIEA715.15B標準氣體以驗證本系統具有將不同極性的目標化合物有效分離的能力。TD-GC×GC-FID系統在利用標準品確認最佳化條件後也對由採樣袋所採集的都市街道空氣樣品 (VOCs來源主要為汽機車)於實驗室進行分析。TD-GC×GC-FID系統對VOCs具有良好分群能力,並且對於PAMS中各標準品在7重複實驗下皆有1.4 %以下RSD的高再現性,對於甲苯的偵測極限為18 ppb,說明本系統能有效分析對VOCs具有良好的分析能力。zh_TW
dc.description.abstractDue to the complexity of ambient volatile organic compounds (VOCs), conventional one-dimensional gas chromatography is limited in separation power and peak capacity. The advent of comprehensive two dimensional GC, called GCxGC, has greatly improved peak resolution by employing two columns of different polarities connected with a modulator. Although this GCxGC technique was largely used for liquid samples such as fuels and fragrance, the potential and benefits in VOC analysis at ambient level is tremendous and worth exploring in response to the growing public concern of air pollution in recent years. In this study, we coupled a thermal desorption (TD) pre-concentrator with GCxGC-FID (called TD-GCxGC-FID), ambient-level VOCs from traffic emissions were able to be effectively analyzed. The modulator is a core component in GCxGC, and thermal modulators are the most widely used owing to the advantages of sensitivity and the ease of optimizing modulation parameters. However, the need of cryogen, such as liquid nitrogen, hinders many users from ownership due to high cost in purchase and maintenance. Instead, flow modulators, which do not need cryogen, has steadily gain popularity. Although commercial flow modulators are available, the flexibility in the flow design is low. In this study, we used two flow splitters (provided by SGE SilflowTM) to configure a flow modulator to improve versatility in modulation, such as flow path, flow rate, and sample filling loop length without adding dead volume. In this study, we report the optimization process of a self-built TD-GCxGC-FID system by analyzing both standard mixtures of VOCs (both PAMS and NIEA715.15B) and ambient air samples from the aspects of column phase selection, modulation parameters, flow adjustment, and the control parameters of the filling loop and bleeding. The important GCxGC parameters were determined as: column combination = DB-1 (30 mx 0.25 mm x 1.0 um) x Stabilwax (2 m x 0.18 mm x 0.18 um), modulation period (Mp) = 3 s, duty cycle = 0.15, modulation ratio (MR) = 5-7, filling loop = 25 cm x 0.32 mm O.D. (or 25 um in volume) and the bleed column length = 1.6 m x 0.18 mm. The standard mixture of NIEA 715.15B containing 61 compounds of various polarity were analyzed to ensure the ability to separate target compounds of different functional groups. With the conditions set by the standard mixtures, real ambient samples were then collected by the TedlarTM bags in the streets with VOCs mainly contributed by the traffic source and analyzed by the TD-GCxGC method in the laboratory. VOCs were successfully separated in groups on GCxGC chromatograms with reproducibility of better than 1.4% for all PAMS target compounds and sensitivity in detection limit of 18 ppb for toluene as an example.en_US
DC.subject分析化學zh_TW
DC.subject氣相層析zh_TW
DC.subject全面二維氣相層析zh_TW
DC.subject揮發性有機污染物zh_TW
DC.subject前濃縮zh_TW
DC.subject氣流式調制器zh_TW
DC.subjectAnalytical Chemistryen_US
DC.subjectGas Chromatographyen_US
DC.subjectComprehensive Two Dimensional Gas Chromatographyen_US
DC.subjectVOCsen_US
DC.subjectPre-concentrateen_US
DC.subjectFlow Modulatoren_US
DC.title開發新型氣流式二維氣相層析法分析空氣污染物zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明