博碩士論文 105323054 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator莊嘉智zh_TW
DC.creatorChia-Chih Chuangen_US
dc.date.accessioned2020-8-19T07:39:07Z
dc.date.available2020-8-19T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105323054
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract以碳為原料作為電極的超級電容,不僅成本低廉,也能應用在更廣的溫度範圍。本研究先以靜電紡絲技術製備出奈米纖維膜,再運用雷射將奈米纖維膜快速碳化,形成碳奈米纖維膜作為雙電層電容的電極,運用靜電紡絲製備出來的纖維具有極佳的連續性,所製作出來的碳奈米纖維能有較好的導電性,降低電容的內電阻。碳奈米纖維上的孔洞特性,用在雙電層電容的電極是很好的選擇,使用雷射快速加熱增加孔洞量,也能用來提升電容。 在雷射碳化方面還有很多優點,相較於傳統以管式爐碳化,其加熱與降溫常需要數小時,而使用雷射碳化,可將製程時間減少至數分鐘、甚至數十秒。雷射可以使用更少的能量將碳化溫度提升到更高,增加能量使用效率,更高的碳化溫度也能有更好的石墨化程度,使碳奈米纖維電極的導電度更好。因此,對於應用在雙電層電容的碳奈米纖維電極,使用靜電紡絲加雷射碳化的方式,不僅提升生產效率、節省成本又能有效能的提升。 結果顯示,本研究所製作的碳奈米纖維,纖維直徑約300奈米,在未經任何活化過程下,比表面積33.63 m²/g,在使用3M KOH當電解質時,用三電極測試最高達到21.66 F/g的比電容值,是使用傳統管式爐加熱所獲碳奈米纖維電極的數倍。zh_TW
dc.description.abstractUsing carbon as an electrode, the supercapacitor not only has the advantage of reducing material costs, but also is applicable to a wider temperature range. In this study, the carbon-based nanofiber membrane electrode, for an electric double layer capacitor, was fabricated by the techniques of electrospinning and a follow-up laser carbonization. The fibers prepared by electrospinning take the advantage of excellent fiber continuity that leads to better electrode conductivity and lower internal resistance on the resulting supercapacitor. The characteristics of cavities and holes on the laser-carbonized nanofibers are beneficial for the electrodes of electric double layer capacitors. The rapid heating rate of the laser increases the number of holes in the nanofibers, thereby successfully improving the capacitance effect. Compared with traditional tube furnace heating for carbonization, the heating and cooling cycles often take several hours, laser carbonization can reduce the processing time to several minutes or even tens of seconds. The laser can use less energy to raise the carbonization temperature to a higher level, increasing the energy use efficiency. A higher carbonization temperature also leads to a better degree of graphitization, which makes the carbon nanofiber electrode be more conductive. Therefore, the carbon nanofiber electrodes used in electric double-layer capacitors, that are obtained by electrospinning and laser carbonization, can not only improve production efficiency, but also effectively improves electrode performance. Results show that the diameter of the carbon nanofibers fabricated in this study is about 300 nm. Without any activation process, the specific surface area can reach 33.63 m²/g. When using 3M KOH as the electrolyte and characterized using a three-electrode tester, the specific capacitance is measured to be 21.66 F/g that is several times higher than the carbon nanofiber electrodes obtained by heating in a traditional tube furnace.en_US
DC.subject靜電紡絲zh_TW
DC.subject雷射碳化zh_TW
DC.subject超級電容zh_TW
DC.subject碳奈米纖維zh_TW
DC.subjectelectrospinningen_US
DC.subjectlaser carbonizationen_US
DC.subjectsuper capacitorsen_US
DC.subjectcarbon nanofibersen_US
DC.title以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極zh_TW
dc.language.isozh-TWzh-TW
DC.titleFabrication of Carbon Nanofiber for Supercapacitor Electrodes by Laser Carbonization of Electrospun Carbon Nanofiberen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明