博碩士論文 105323089 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator吳政坤zh_TW
DC.creatorWU, ZHENG-KUNen_US
dc.date.accessioned2020-7-29T07:39:07Z
dc.date.available2020-7-29T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105323089
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文以PMMA/COC/CBC為微流體基板,利用微銑削加工製程進行微流體製造,由於微切削後會有殘留紋路的產生,但較少的學者討論殘留紋路的後處理方式及後處理對微結構的影響。因此本論文針對拋光製程及拋光後對模具複製時的影響做相關探討。 實驗設計分為三階段進行,第一階段觀察微銑削加工與材料對表面粗糙度的影響,以工件表面粗糙度為評估因子,找出最適當之切削參數與材料,實驗結果顯示PMMA的切削性最佳,在加工參數(Ø 0.2 mm, 1 mm/s, 30,000 rpm)時,表面粗糙度為Ra=0.380 μm;第二階段則是利用羊毛輪與材料表面間擠壓的位移變形量(預壓量)與丙酮熔融材料之時間,來觀察拋光對表面粗糙度及微結構的影響,在工件表面粗糙度及微結構失真率中尋找最適當之拋光參數平衡點,本實驗結果顯示機械研磨拋光在預壓量0.3 mm時,表面粗糙度為Ra=0.162 μm,微結構失真率約為14%,而化學熔融拋光則是在拋光時間4 min時,表面粗糙度為Ra=0.180 μm,微結構失真率約為30%;第三階段為複製方式對微流體裝置的影響,對比複製後模具結構在表面粗糙度與微結構的影響。本實驗結果顯示熱塑性微流體裝置與PDMS微流體裝置相比,雖然會因為熱壓導致微結構些微變形,但其裝置結合強度較高壓力適用範圍更廣。而PDMS微流體裝置則能在結合時,消除加工造成的表面紋路獲得更好的表面粗糙度,且PDMS為彈性體能做到一定程度的彎折。zh_TW
dc.description.abstractIn this paper, PMMA/COC/CBC is used as the microfluidic substrate, and the micro-milling process is used for microfluidic manufacturing. Because there will be residual lines after micro-cutting, fewer scholars discuss the post-processing methods and post-processing effects of residual lines. The influence of microstructure. Therefore, this paper discusses the polishing process and the impact of polishing on mold replication. The experimental design is divided into three stages. The first stage observes the effect of micro-milling processing and materials on the surface roughness, and uses the surface roughness of the test piece as an evaluation factor to find the most appropriate cutting parameters and materials. The experimental results show that PMMA has the best machinability, and the surface roughness is Ra=0.380 μm when the machining parameters are (Ø 0.2 mm, 1 mm/s, 30,000 rpm). The second stage is to use the displacement and deformation (preload) of the extrusion between the wool wheel and the material surface and the time for the acetone to melt the material to observe the effect of polishing on the surface roughness and microstructure. Find the most appropriate polishing parameter balance point in the structural distortion rate. The results of this experiment show that when the preload is 0.3 mm, the surface roughness of mechanical grinding and polishing is Ra=0.162 μm, and the microstructure distortion rate is about 14%, while the chemical melting polishing is when the polishing time is 4 min, the surface roughness is Ra=0.180 μm, the microstructure distortion rate is about 30%. The third stage is the impact of the replication method on the microfluidic device, comparing the impact of the mold structure on the surface roughness and microstructure after replication. The results of this experiment show that compared with the PDMS microfluidic device, the thermoplastic microfluidic device may cause a slight deformation of the microstructure due to thermal pressure, but the device has a higher bonding strength and a wider range of pressure applications. The PDMS microfluidic device can eliminate surface textures caused by processing to obtain better surface roughness when combined, and PDMS is an elastomer that can bend to a certain extent. en_US
DC.subject微銑削zh_TW
DC.subject微結構拋光zh_TW
DC.subject表面粗糙度優化zh_TW
DC.subject微流體zh_TW
DC.subjectMicro millingen_US
DC.subjectMicrostructure polishingen_US
DC.subjectSurface roughness optimizationen_US
DC.subjectMicrofluidicsen_US
DC.title拋光方法對塑膠微流控裝置之表面優化和結構的影響zh_TW
dc.language.isozh-TWzh-TW
DC.titleOptimization of surface polishing method and its structure effects for polymer microfluidic deviceen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明