博碩士論文 105328007 完整後設資料紀錄

DC 欄位 語言
DC.contributor能源工程研究所zh_TW
DC.creator蔣建勇zh_TW
DC.creatorJIAN-YONG JIANGen_US
dc.date.accessioned2019-6-4T07:39:07Z
dc.date.available2019-6-4T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105328007
dc.contributor.department能源工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract近年來奈米多孔石墨烯在許多重要技術領域中實現了廣泛的應用潛力,而在科學界以及工業界引起不小的關注,對於多功能性的多孔石墨烯來說,要能完全控制其整體孔洞結構和密度。對於高質量負載的電極來說,想要快速地儲存和傳輸能量,離子能有效地在電極材料內移動以及量身定製的多孔性是相當重要的。 本研究呈現一個獨特、簡單且低成本的技術,即是以奈米銅顆粒作為催化劑,由銅顆粒來決定所合成之多孔石墨烯的孔洞尺寸以及形狀,從而產生高孔洞密度(103/µm)。以電化學結果來看,電極材料於高質量負載時,多孔石墨烯的比電容值、能量以及功率密度皆比還原電化學剝離石墨烯(Reduced electorchemical exfoliation graphene, rECG)高出一個數量級,同時於循環15000次之後依然保有高於99%的電容維持率。在電極材料負載量15 mg/cm2時,多孔石墨烯的擴散係數比rECG高出約1.5倍,由於多孔的結構提供離子一個不曲折的貫通傳輸路徑,使多孔石墨烯具有較高之電化學表現。 此外,多孔石墨烯的振實密度(0.72 g/cm3)比rECG(0.0064 g/cm3)高出約兩個數量級,表示多孔石墨烯較不易因回疊而損耗電容量以及具有較高體積電容,本研究證實能夠控制多孔石墨烯的孔洞結構,使電極材料在高負載量時仍能確保離子傳輸的效率,同時也了解到孔洞結構的重要性,並為可控性多孔石墨烯為基礎的技術開啟新的應用道路。 zh_TW
dc.description.abstractNanoporous holey-graphene (HG) recently, made a sensation in scientific and industrial community because of its just actualized versatile potentials in several technologically important fields. The versatility of HG demands a complete control over its entire pore-architecture and density. Particularly, for ultra-high storage and rapid delivery of energy, along with well-tailored porosity, facile through-thickness ion-transport in a high-mass-loaded electrode is immensely important. Here we report, a unique, simple and cost effective copper nanocatalyst assisted predefined porosity tailoring of HG leading to extraordinary high pore-density exceeding 1103 per µm-2. Synchronizing the porosity with high-mass loading results in excellent supercapacitor performance of at least an order higher areal capacitance (~100% retention up to 15000 cycles), energy and power densities along with 90% retainment of gravimetric capacitance (as a function of mass loadings) than rECG. A rapid increase (1.5 fold higher than rECG) of diffusion coefficient (4.0102 fold) as a function of mass loading suggest excellent non-tortuous ion-transport in 15 mg cm-2 HG electrode. Further, two order higher tap-density of HG (0.72 g cm-3) as compared to rECG (0.0064 g cm-3) suggests lower restacking and higher volumetric capacitance of HG. As far our knowledge, this is the first report of complete tailoring of HG porosity blended to facile ion-transport in a high mass loaded electrode and opens new avenue for futuristic HG based technologies wherein pore architecture is significantly important.en_US
DC.subject多孔石墨烯zh_TW
DC.subjectzh_TW
DC.subject奈米催化zh_TW
DC.subject奈米孔洞zh_TW
DC.subject超級電容zh_TW
DC.subjectholey-grapheneen_US
DC.subjectcopperen_US
DC.subjectnano-catalysten_US
DC.subjectnanoporesen_US
DC.subjectsupercapcitoren_US
DC.title以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleNano-catalyst assisted pore-structure tailoring of holey-graphene for high performance energy storageen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明