博碩士論文 105521002 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator簡盛宥zh_TW
DC.creatorSheng-Yu Chienen_US
dc.date.accessioned2018-11-22T07:39:07Z
dc.date.available2018-11-22T07:39:07Z
dc.date.issued2018
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=105521002
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract砷化銦鎵/磷化銦單光子雪崩型偵測器用於近紅外光波段光纖通訊,但 此材料磊晶時容易產生缺陷,因此相較於矽製程的單光子雪崩型偵測器, 有較高的暗計數,使得許多應用受限於暗計數而無法做微弱光之偵測。本 論文將在不同溫度下分析暗計數的產生機制,我們運用閘控模式操作元件 並將元件溫度降至77K。由結果可觀察各溫度區間是由不同的暗計數機制主 導,高溫區(200-300K)的暗計數來源為熱產生載子,低溫區(77-125K)由二 次崩潰主導,而中間溫度區暗計數較低,為穿隧載子所貢獻,但此區在溫 度變化時暗計數出現局部極值,為了探討此現象,我們改變元件內部電場, 發現暗計數局部極值發生的溫度會跟著偏移,推論此溫度區間的暗計數與 電場相關,然而與電場相關的穿隧效應並不會造成此現象,因此我們將暗計 數局部極值歸因於電荷堆積效應。為了驗證此論點,我們進行照光量測,藉 由改變雷射入射元件的時間點觀察光計數的變化,可發現在150K下,亦即暗 計數發生局部極值時,光計數也有嚴重的電荷堆積效應;而在200K下,因熱 產生載子被大量抑制,電荷堆積的效應不明顯,隨著溫度上升,電荷堆積的 效應又會隨之出現,由結果可得出不僅是光產生載子會造成電荷堆積效應, 熱產生載子亦是電荷堆積效應的電荷來源。我們還在125K到175K之間量測元 件的光偵測效率,發現電荷堆積效應除了對暗計數有直接影響外,在此溫度 區間也會讓元件的PDE被高估。zh_TW
dc.description.abstractInGaAs/InP single photon avalanche diodes are of great potential in the application of near-infrared optical fiber communication. However, comparing to Si single photon avalanche diodes, InGaAs/InP single photon avalanche diodes have higher dark count due to its material and structural characteristics. In this thesis, we characterize the dark count performance at different temperature ranges by operating the device under gated mode with frequency of 10 kHz and voltage pulse width of 20 ns. The device is cooled down to 77 K by using liquid nitrogen. From the experiments, different mechanisms are dominant over different temperature ranges. In high temperature region (200 K-300 K), the dark counts originate from the thermal generation. For the low temperature region (77 K-125 K), afterpulsing dominates. While in the intermediate temperature region (125 K-200 K), the dark count rates should be restricted to the tunneling carriers, however, a non-monotonic behavior in the dark count performance is observed, that is, a local maximum of dark count rates occurs at around 150 K. In order to study this phenomenon, we vary the internal electric field and found that the local maximum shifts to lower temperature, showing that the local maximum is sensitive to the internal electric field and hence is attributed to the charge persistence effect. To further evidence this argument, we illuminate the device with a time-varying incoming pulse laser. It is found that the charge persistence effect gets most serious at 150 K, where the local maximum of dark count rate occurs. At 200 K, where the thermal carriers are greatly suppressed, the device is almost free from the charge persistence effect. The investigation reflects that the charge persistence effect is involved in the intermediate temperature rage and it is iii caused not only by the photo-generated carriers but also by the thermal-generated carriers. We also attempt to see the impact of charge persistence effect on the photon detection efficiency. Our results reveal that the photon detection efficiency could be overestimated due to the existence of charge persistence effect.en_US
DC.subject雪崩型崩潰光二極體zh_TW
DC.subject磷化銦zh_TW
DC.subject砷化銦鎵zh_TW
DC.subjectavlancheen_US
DC.subjectphotonen_US
DC.subjectdetectoren_US
DC.subjectInGaAsen_US
DC.subjectInPen_US
DC.title砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析zh_TW
dc.language.isozh-TWzh-TW
DC.titleDark and Illumination Characteristics of InGaAs/InP Single Photon Avalanche Diodesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明