博碩士論文 106226067 完整後設資料紀錄

DC 欄位 語言
DC.contributor光電科學與工程學系zh_TW
DC.creator吳睿哲zh_TW
DC.creatorJui-Che Wuen_US
dc.date.accessioned2020-1-16T07:39:07Z
dc.date.available2020-1-16T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106226067
dc.contributor.department光電科學與工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文提出以高分子聚合物光波導製程適用於4通道 x 25-Gbps 低密度分波多工器(Coarse Wavelength Division Multiplexing)單模光學收發模組之光學引擎。此光學引擎之輸入端於矽基板上整合了分佈回饋式雷射(Distributed Feedback Laser)、高分子聚合物光波導陣列波導光柵(Polymer Waveguide Based Array Waveguide Grating)作為多工器;接收端於玻璃基板上整合了高分子聚合物光波導陣列波導光柵(Polymer Waveguide Based Array Waveguide Grating)作為解多工器、1 x 4陣列PIN光電二極體(1 x 4 Array PIN Photodiode)。此高分子聚合物四波長陣列波導光柵之輸入及輸出埠光學界面,包含輸入端:雷射與高分子聚合物光波導之界面、高分子聚合物光波導與單模光纖之界面;接收端:單模光纖與高分子聚合物光波導之界面、高分子聚合物光波導與1 x 4陣列PIN光電二極體之界面。上述光學界面之間皆無透鏡設計,藉以簡化封裝製程。且在最惡劣條件下,輸入端通道中傳輸光的能量為 -0.64 dBm大於MSA所規範至少 -6.5 dBm;接收端通道中傳輸光的能量為 -7.08 dBm大於MSA所規範至少 -11.5 dBm。 以黃光製程製作長直高分子聚合物光波導,並藉由控制<100>矽基板晶向面之劈裂方向創造自然劈裂面,取代傳統與光波導端面研磨製程。設計光波導為矩形光波導,但實際製程為鐘形光波導。量測光波導尺寸W × H = 12 × 12 um^2的長直高分子聚合物光波導其平均插入損耗為 -7.23 dB,而模擬值為 -4.45 dB;波導尺寸W × H = 12 × 7 um^2的長直高分子聚合物光波導其平均插入損耗為 -8.13 dB,而模擬值為 -5.25 dB;波導尺寸W × H = 7 × 7 um^2的長直高分子聚合物光波導其平均插入損耗為 -9.95 dB,而模擬值為 -8.26 dB。 zh_TW
dc.description.abstractIn this thesis, a none-lens-coupling optical interfaces using polymer optical waveguides is proposed to simplify the optical system of Coarse Wavelength Division Multiplexing 4-channel optical transceiver (CWDM4 optical Tx/Rx) with an aggregate data rate of 100 Gbps. The optical interface at the transmitting end of CWDM4 optical Tx/Rx including 4-channel distributed feedback lasers aligned to a polymer-based 4-wavelength Array Waveguide Grating (AWG) Multiplexer integrated on the silicon substrate. Between Multiplexer and Demultiplexer, a single-mode fiber is adopted to align. The optical interface at the receiving end of CWDM4 optical Tx/Rx, a 4-channel PIN Photodiodes assembled on a glass substrate is aligned to the polymer-based 4-wavelength AWG Demultiplexer. The results of numerical simulation show that the optical efficiencies at interfaces of transmitting and receiving ends are -0.64 and -7.08 dBm, respectively for the worst cases. Both values are superior to the specifications of -6.5 and -11.5 dBm of Multi-Source Agreement (MSA) of CWDM4 optical Tx and Rx, respectively. The pattern of a straight polymer optical waveguide is developed using the photo-lithography process. By defining the end facets of waveguide parallel to the crystal plane direction of <100> silicon wafer and cleaving it along the <100> direction, the end facets of waveguide is formed directly without the polish process. Although the rectangular contour is designed for original waveguides, however bell-shaped optical waveguides is obtained due to over exposure in photo-lithography process. The average measured insertion losses of bell-shaped optical waveguides are -7.23, -8.13, and -9.95 dB for various end facets W×H of 12×12, 12×7, and 7×7 um2, respectively. The corresponding simulated results are -4.45, -5.25, and -8.26 dB, respectively. en_US
DC.subject高分子聚合物zh_TW
DC.subject光波導zh_TW
DC.subject低密度分波多工器zh_TW
DC.subject陣列波導光柵zh_TW
DC.subjectPolymeren_US
DC.subjectOptical Waveguideen_US
DC.subjectCWDMen_US
DC.subjectArray Waveguide Gratingen_US
DC.title高分子聚合物四波長陣列波導光柵之輸入及輸出埠光學界面特性研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleOptical Interface Study for Input and Output Ports of Polymer-Based 4-Wavelength Array Waveguide Gratingsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明