DC 欄位 |
值 |
語言 |
DC.contributor | 機械工程學系 | zh_TW |
DC.creator | 陳慶臨 | zh_TW |
DC.creator | Ching-Lin Chen | en_US |
dc.date.accessioned | 2019-8-7T07:39:07Z | |
dc.date.available | 2019-8-7T07:39:07Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106323079 | |
dc.contributor.department | 機械工程學系 | zh_TW |
DC.description | 國立中央大學 | zh_TW |
DC.description | National Central University | en_US |
dc.description.abstract | 摘要
本研究探討在ITO玻璃基板上利用曝光蝕刻製程製作出奈米週期結構以增加鈣鈦礦LED(以CsPbBr3為發光層)光萃取率,本文利用光學模擬的方式模擬不同CsPbBr3厚度平面LED和不同CsPbBr3厚度之不同蝕刻深度之週期結構以得到最高光萃取率並了解光萃取率增加的程度,如此即可減少製作元件之成本與時間。
模擬不同CsPbBr3厚度之平面LED可發現:光萃取率會隨著厚度的改變而有波動性的變化,在厚度50nm時光萃取率為13.90%;厚度100nm時為21.94%;厚度150nm時為13.88%而厚度200nm時為23.05%,原因是發光層光學厚度改變所產生之建設性與破壞性干涉。
模擬不同CsPbBr3厚度與不同蝕刻深度週期結構可發現:在厚度50nm時光萃取率會隨著蝕刻深度(30/50/80/100nm)增加而增加,蝕刻深度30nm為18.65%;深度50nm為22.65%;深度80nm為27.86%,而深度100nm為31.34%,這是因為光柵相位差異所產生之克希荷夫繞射增益,但是當蝕刻深度超過100nm,出光率會因為等效介質光柵反射率上升而有些微下降;厚度100nm時蝕刻深度30nm光萃取率為32.88%;在深度50nm時達到最高光萃取率37.69%而在深度80nm時下降至33.18%,這是因為點光源與光柵的距離因素產生之繞射增益減少;厚度200nm時蝕刻深度30nm光萃取率即達到最大值32.25%,之後隨蝕刻深度增加(50/80nm),光萃取率下降至31.62%與27.61%,此為斜邊產生破壞性干涉所造成之結果;改變點光源X位置可發現在斜邊處發出的光能比起在平邊發出的量來得少,可印證斜邊產生之破壞性干涉。
| zh_TW |
dc.description.abstract | Abstract
It is a piece of research about the study of enhancing light extraction efficiency of perovskite LED (use CsPbBr3 as active layer) by exposing and etching ITO substrate for Nano-patterned periodic structure. In this article we use optical simulation to simulate plane LED in different CsPbBr3 thickness and periodic patterned LED in different CsPbBr3 thickness and etching depth for best light extraction efficiency, and this method can let us understand the amount of enhancement of light extraction efficiency to save money and time of manufacturing.
By simulating plane LED in different CsPbBr3 thickness, we can understand there is fluctuate difference of light extraction efficiency with changes of thickness. At thickness of 50nm, the light extraction efficiency is 13.9%; at 100nm, it’s 21.94%; at 150nm, it’s 13.88% and at 200nm it’s 23.05%. It’s because optical thickness changes of active layer will produce constructive and destructive interference.
By simulating periodic structure in different CsPbBr3 thickness and etching depths, we can understand there is enhancement of light extraction efficiency with increased etching depth(30/50/80/100nm) at 50nm thickness. At etching depth of 30nm, the light extraction efficiency is 18.65%; at 50nm, it’s 22.65%; at 80nm it’s 27.86% and at 100nm it’s 31.34%. It’s because grating phase difference will produce kirchhoff’s diffraction enhancement. But the efficiency will decrease slightly when the etching depth is beyond 100nm because of the increase of reflectivity of the effective medium grating. When the CsPbBr3 thickness is 100nm, at etching depth of 30nm, the light extraction efficiency is 32.88%; at 50nm, it’s 37.69% and the best number; at 80nm, the number decreased to 33.18%. It’s diffraction efficiency decrease because of the distance between point sources and gratings. When CsPbBr3 thickness is 200nm, at etching depth of 30nm, the light extraction efficiency is 32.25% and the best number. Then the number is decreased with increased etching depth. At etching depth of 50nm, the light extraction efficiency is 31.62% and at 80nm it’s 27.61%. It’s the result of destructive interference produced by inclined side. When we change x axis of point sources we can understand there is less light power extracted at inclined side than at flat side. It can prove the destructive interference produced by inclined side.
| en_US |
DC.subject | 鈣鈦礦 | zh_TW |
DC.subject |
奈米週期結構 | zh_TW |
DC.subject |
光萃取率 | zh_TW |
DC.subject |
時域有限差分法 | zh_TW |
DC.title | ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究 | zh_TW |
dc.language.iso | zh-TW | zh-TW |
DC.title | The Simulation Study of Enhancing Light Extraction Efficiency of Perovskite Light Emitting Diodes Via Nano-Periodic Structure of ITO Substrate | en_US |
DC.type | 博碩士論文 | zh_TW |
DC.type | thesis | en_US |
DC.publisher | National Central University | en_US |