博碩士論文 106323093 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator陳威霖zh_TW
DC.creatorWei-Lin Chenen_US
dc.date.accessioned2020-8-13T07:39:07Z
dc.date.available2020-8-13T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106323093
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract銻烯(Antimonene)為翹曲蜂巢狀結構(bucked honeycomb structure)的新興二維半導體材,因其本身具有2.28 eV的寬能隙、1329 cm2/Vs的載子遷移率,並且在大氣環境中的化學穩定性相較於二硒化銦(InSe2)以及黑磷烯(phosphorene)更為穩定,因此被視為具有發展潛力的二維材料之一。然而,銻烯所欠缺的關鍵技術為一種有效率、可大量製造高品質銻烯的生產製程。現今主流製備銻烯的方法有許多種,其中液相剝離法(liquid phase exfoliation)是目前最有發展潛力的合成方法。 不過目前液相剝離所生產的銻烯片層厚度大多約為幾百奈米(nm)到幾個微米(µm),而片層厚度少於幾十奈米(nm)的銻烯又面臨著片徑大小過小的問題,因此限制了實際的應用。因此本研究展示一種改良液相剝離製程的方法,通過對銻金屬粉末進行焠火處理,因焠火處理時銻金屬粉末表面因高溫發生昇華現象,而表面片層昇華導致銻金屬粉末整體厚度下降,使得液相剝離過程中的銻金屬粉末更容易剝離出較薄的片層,降低銻烯平均厚度並且提高銻烯產率。 實驗結果由接觸角分析以及原子力顯微鏡(Atomic Force Microscopy)分析得知IPA為最適合銻金屬液相剝離之溶劑,而平均片徑大小63.4奈米、平均片層厚度為1.46奈米,並且從本實驗所生產之少層銻烯統計分析中發現本實驗有助於提高銻烯尺寸均一性,使用可紫外光-可見光光譜(Ultraviolet – Visible Spectroscopy)可計算出光能隙為2.79 eV,而產率達到36.1 %。並且從X射線繞射圖譜(X-Ray Diffraction)結果發現沿著(012)晶面最為容易剝離出少層的銻烯。此方法提供了一種簡單、快速且具備大量生產的途徑,並且有助於降低成本效益以及提高產量的優勢。zh_TW
dc.description.abstractAntimonene is an emerging two-dimensional semiconductor material that is buckled honeycomb structure, wide bandgap 2.28 eV, and 1329 cm2/Vs carrier mobility. Compared to well-studied 2D materials such as InSe2 or phosphorene, antimonene has higher chemical stability under the atmosphere. Therefore, it is regarded as one of the next-generation electronics materials. However, the bottle-neck of antimonene is out of a proper method to produce high-quality antimonene. Nowadays, the frequently-used method is liquid-phase exfoliation; however, the as-prepared antimonene can only have around hundreds of nanometers to a few micrometers thick or less than tens nanometer in lateral size, thus limits the practical application of of antimonene . Herein, we provide an improved liquid-phase exfoliation by quenching antimony powder in advance. During the quenching process, the surface of the antimony powder not only flattens but also declines the thickness due to the high temperature. Moreover, this process also plays a main role to assist the reduction of the thickness and increasing the production yield of exfoliated antimonene flakes. As a result, atomic force microscopy (AFM) analysis shows the average flake size is 63.4 nm, and the average thickness is 1.46 nm; besides, the statistical analysis provides the evidence that this method allows to produce the high-uniformity in lateral size of antimonene. The optical band gap, analyzed by ultraviolet-visible spectrophotometry, is 2.79 eV, and the yield of antimonene is 36.1%. Finally, the X-ray diffraction (XRD) results indicate that the antimonene film can easily exfoliate along the (012) plane. This method provides a high-efficiency, cost-effective, and mass-production method for high-quality antimonene.en_US
DC.subject改良液相剝離法zh_TW
DC.subject銻烯zh_TW
DC.title利用改良液相剝離法提高銻烯合成產率與均質性之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleHigh yield and uniformity of few-layer antimonene by modified liquid-phase exfoliationen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明