博碩士論文 106522069 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator蘇俊儒zh_TW
DC.creatorJun-Ru Suen_US
dc.date.accessioned2019-7-2T07:39:07Z
dc.date.available2019-7-2T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106522069
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract現今多模型的整合大多採用固定策略,在訓練過後,多個基礎模型將以「靜態」的方式作融合,即:不會因為待測樣本的特徵不同而改變基礎模型的融合方式。但在現實的訓練情境中,單一模型可能只擅長於預測特定特徵分佈的樣本。由於各個樣本的特徵分佈不盡相同,只採用「靜態」融合的策略可能是過於天真的。 主流多模型融合大多假設單一基礎模型對不同數據的預測的能力大致相同,本論文想嘗試設計「動態」的融合學習以彌補這個假設可能造成的缺陷。我們已經嘗試了五種不一樣的方法,分別根據(1) 基礎模型判斷類別的機率;(2) 將基礎模型判斷轉換成損失;(3) 根據樣本空間的判斷能力;(4) 根據樣本空間的答對個數;及(5) 加入分類器判斷正確屬 性,以這五種不同的方法來實做「動態」融合。 本文將說明我們設計的五種方法,並在人工生成資料集、車險資料集、Fahsion-MNIST 以及Kuzushiji-MNIST 上的實驗結果。我們設計的融合方法的預測準確度均優於基礎模型,這說明動態的多模型融合是可行的。然而,與理想Model 相比,結果相差甚遠,在訓練額外屬性學習器上還有加強的空間。zh_TW
dc.description.abstractNowadays most of the ensemble learning methods apply a static strategy to integrate the base learners. After training, base learners are merged in a “static”manner, that is, the basic models will not adapt the fusion strategy to the different feature distribution of the samples to be tested. However, in a realistic training scenario, a single model may only be good at predicting samples of a particular feature distribution. Since the features of each sample are distributed differently, the strategy of using only “static”fusion may be over-naïve. The mainstream ensemble models mostly assume that the ability of a single base model to predict different data is roughly the same. This paper attempts to design a“dynamic”ensemble model to compensate for the shortcomings of this hypothesis. We have tried five different methods, based on (1) the category probability predicted by the base learners; (2)the loss of the base learners; (3) the percentage of correctness of the nearby samples predicted by the base learners ; (4) the numbers of correctness of the nearby samples predicted by the base learners ; and (5) adding extra features about which base learner correctly predict the right label. These five methods realize the “dynamic”ensemble. This article will explain the five methods we designed and the experimental results based on a simulated dataset and three real datasets, including the Allstate dataset, the Fashion-MNIST dataset, and the Kuzushiji-MNIST dataset. We found that all five ensemble methods perform better than each of the single base learners. However, if we compare our method with an ideal model, the result is not good enough. Therefore, it may still be possible to improve our methods by training the leaner with extra features.en_US
DC.subject多模型融合zh_TW
DC.subject動態多模型融合zh_TW
DC.subject監督式學習zh_TW
DC.subjectensemble learningen_US
DC.subjectdynamic ensemble learningen_US
DC.subjectsupervised learningen_US
DC.title動態多模型融合分析研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleDynamic Ensemble Learning Researchen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明