博碩士論文 106624003 完整後設資料紀錄

DC 欄位 語言
DC.contributor應用地質研究所zh_TW
DC.creator雷修懿zh_TW
DC.creatorLEI XIU YIen_US
dc.date.accessioned2019-8-20T07:39:07Z
dc.date.available2019-8-20T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106624003
dc.contributor.department應用地質研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract放射性廢棄物隧道處置的議題中,地下水於隧道壁面周圍之流動行為與流量為安全評估之重要資訊。過去的研究發現不連續面位態分布及應力的異向性會使裂隙岩體的水力傳導係數產生異向性,同時也發現裂隙力學行為中之剪脹對於隧道周圍流場的分布是不可忽略之要素,前人已透過單向耦合方法針對上述之課題進行研究,但僅單向的考慮應力對滲流場之影響。本研究將進一步探討滲流場-應力場之雙向耦合對隧道周圍流場的影響,以JRC-JCS模式計算裂隙受力產生正向閉合與剪脹之行為,並以Oda擬連續體模式計算隧道周圍水力傳導係數空間分布,再以有限差分法配合局部加密之網格得到隧道周圍的流場以及孔隙水壓,並在考慮孔隙水壓的情況下計算隧道周圍之有效應力場,疊代計算至收斂以表示滲流場與應力場間的互制作用。本研究使用之模型建立於地下650公尺深處,在考慮不同的邊界應力與裂隙分佈之異向性下,結果表示雙向耦合方法之隧道入流量相較單向耦合方法的結果約增加20%,並且於不同異向性參數下,雙向耦合方法下之剪脹區域與剪脹貢獻程度與單向耦合方法有顯著差異,因此隧道周圍流場分析應考慮水力-力學耦合效應。另一方面網格局部加密下之計算結果相較於未加密之結果,能有效反應水力傳導係數驟降之影響。 關鍵詞:水力-力學雙向耦合、岩盤隧道、水力傳導係數、剪脹 zh_TW
dc.description.abstractFor radioactive waste disposal tunnels, the groundwater flow around the tunnel wall is an important issue for safety assessment. Previous study found that the distribution of discontinuous orientation and the anisotropy of stress can induce anisotropic hydraulic conductivity of rock masses. It is also found that the dilatancy in the mechanical behavior of fractures is not negligible for evaluating the groundwater flow around the tunnel. In this study, we will further investigate the influence of the hydro-mechanical coupling on the groundwater flow field around the tunnel. The JRC-JCS mode is used to calculate the behavior of the normal closure and the dilatancy of the fracture, and the spatial distribution of hydraulic conductivity around the tunnel is calculated by the Oda model. The finite difference method was used to caculate the flow field and pore water pressure around the tunnel. The density of the grids near the tunnel was increased. The effective stress field around the tunnel is calculated considering the pore water pressure, and iteratively calculates to converge to indicate the interaction between the flow field and the stress field. The model used in this study was established at a depth of 650 meters underground. Considering the different boundary stress and the anisotropy of the fracture distribution. The results show that the tunnel inflow of the two-way coupling method is about 20% higher than that of the one-way coupling method. Under different anisotropy parameters, the dilating area and the dilatancy contribution under the two-way coupling method are significantly different from the one-way coupling method. Therefore, the hydro-mechanical coupling effect should be considered in the flow field analysis around the tunnel. The calculation result under the increasing density of the grid can effectively reflect the influence of the sudden drop of the hydraulic conductivity compared with the result of the original grid size. Keywords: Hydro-mechanical coupling, rock mass, tunnel, hydraulic conductivity, shear dilatancy en_US
DC.subject水力 -力學雙向耦合zh_TW
DC.subject岩盤隧道zh_TW
DC.subject水力傳導係數zh_TW
DC.subject剪脹zh_TW
DC.subjectHydro-mechanical couplingen_US
DC.subjectrock massen_US
DC.subjecttunnelen_US
DC.subjecthydraulic conductivityen_US
DC.subjectshear dilatancyen_US
DC.title利用有限差分法探討水力 -力學雙向耦合效應對岩盤隧道周圍地下水流之影響zh_TW
dc.language.isozh-TWzh-TW
DC.titleHydraulic-mechanical coupling effect on groundwater flow around rock tunnel using finite difference methoden_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明