博碩士論文 107222014 完整後設資料紀錄

DC 欄位 語言
DC.contributor物理學系zh_TW
DC.creator顏君倢zh_TW
DC.creatorChun-Chieh Yenen_US
dc.date.accessioned2019-6-26T07:39:07Z
dc.date.available2019-6-26T07:39:07Z
dc.date.issued2019
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=107222014
dc.contributor.department物理學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract作為具發展性的生長石墨烯方法之一,化學氣相沉積(CVD)以低成本、晶圓尺度的石墨烯為特色,但生長石墨烯所需的溫度約為1050℃,這讓其有耗能的問題。藉由電漿增強化學氣相沉積法(PECVD)的發展,耗能問題得到緩解,電漿中離子與電子所帶的高能量取代了熱能,成長溫度得以降低至約500-900℃。然而CVD生長的石墨烯受限於多晶向晶粒,其包含許多晶粒邊界而降低石墨烯的品質。因此,對於大晶粒面積的石墨烯的追求是個重要的議題,為了這個目的,對成長石墨烯的動力學的瞭解是需要的,且有助於對石墨烯品質的控制。 在本實驗中,我們示範藉由直接電容耦合射頻電漿增強化學氣相沉積法,快速、低瓦數的生長完全覆蓋的石墨烯在銅箔上。此外,我們揭示在不同氫氣甲烷比例下的成和與成長動力學。藉由調整氫氣流量,石墨烯的生長動力學將被氫氣的催化與蝕刻效應的競爭所決定。透過imagej分析掃描電子顯微鏡圖形,生長動力學將被量化分析並由Johnson-Mehl-Avrami-Kolmogorov (JMAK)模型做解釋。在低氫氣流量下,早期的成核與高成核率提供了較高的生長率;在高氫氣流量下,前驅物在基板表面的擴散與外延成長主宰了大面積晶粒的生長。 zh_TW
dc.description.abstractAs the one of the promising method for graphene growth, chemical vapor deposition (CVD) features the low cost, wafer-scaled graphene layer production. However, the temperature for graphene growth is about 1050℃ which has the problem of energy consumption. The development of plasma enhanced chemical vapor deposition (PECVD) eases the problem. High energy ions and electrons in plasma replace the thermal energy and reduce the needed temperature to about 500-900℃. While, the CVD graphene is limited by its polycrystalline grain which contains many grain boundary and reduce the quality of graphene. Therefore, the pursuit for the large grain size graphene is the important issue. For this purpose, the understanding of growth dynamics of graphene is needed for the controlling of the quality of graphene. In our works, we demonstrate the quick, low power growth process of fully-covered graphene on copper foil by direct capacitive-coupled plasma ratio frequency plasma enhanced chemical vapor deposition (CCP-RF-PECVD) system under low pressure. In addition, the study of nucleation and growth dynamics with different ratio of hydrogen and methane is revealed. By tuning the flow rate of hydrogen, the growth dynamics of graphene is determined by the competition of activation and etching effect of hydrogen. After the characteristic of graphene by SEM and image analysis by Imagej, the growth dynamics is quantified and explained by Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. In low H2 flow rate, nucleation in early stage and high nucleation rate supplies the high growth rate. While in high H2 flow rate, the diffusion of precursor on the substrate surface and epitaxial growth dominated and produced the bigger grain. Furthermore, the simulation of modified JMAK model which considered etching effect of H plasma fits well for experiment data. The dispersive kinetics of growth dynamics has been revealed and further understood. en_US
DC.subject石墨烯zh_TW
DC.subject化學氣相沉積法zh_TW
DC.subject二維材料zh_TW
DC.subject成長動力學zh_TW
DC.subject電漿zh_TW
DC.subjectgrapheneen_US
DC.subjectchemical vapor depositionen_US
DC.subject2D materialen_US
DC.subjectgrowth dynamicsen_US
DC.subjectplasmaen_US
DC.title電漿增強化學氣相沉積法生長石墨烯的成核與成長動力學zh_TW
dc.language.isozh-TWzh-TW
DC.titleNucleation and growth dynamics of graphene grown through plasma enhanced chemical vapor deposition (PECVD)en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明