博碩士論文 107521016 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator范文銓zh_TW
DC.creatorFAN,WEN-CHUANen_US
dc.date.accessioned2020-8-5T07:39:07Z
dc.date.available2020-8-5T07:39:07Z
dc.date.issued2020
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=107521016
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract單光子崩潰二極體廣泛應用於醫療電子、光纖通訊、自動駕駛系統等,以往主要以砷化銦鎵為吸收層、磷化銦作為累增層的材料。然而以砷化銦鋁作為累增層有較高的崩潰機率,可預期能有較高的光偵測效率,此外砷化銦鋁對溫度較不靈敏,因此可操作溫度比較彈性。另外為了進一步提升光偵測效率,在N contact layer下方加入分布式布拉格反射器,利用分布式布拉格反射器特性將原來往下的光反射回來,提高光子停留在元件內的時間,使光子被吸收機率大幅提升,進而改善光偵測效率。故本研究以砷化銦鋁作為放大層且附加上分布式布拉格反射器結構進行探討。 元件製程採用平台式蝕刻定義元件有效偵測尺寸,於裸露的側壁上進行硫化處理並包覆保護層以降低元件的漏電流,再將元件的陰陽極蒸鍍金屬,接著打線至電路板上以利後續的量測。透過改變過量偏壓、操作頻率與溫度來分析單光子崩潰二極體的最佳偵測環境。 在室溫下的崩潰電壓為32.7 伏特,溫度係數為10 mV/K;在脈衝寬度為5 ns、溫度187.5 K、過量偏壓4.0 %的操作條件下,單光子偵測效率可達到1.7 %,暗計數率為9.6 %;利用照光雙脈衝法所量測出的二次崩潰機率在20k Hz操作下低於1 %;時基誤差在過量偏壓5.5 %時為59ps。zh_TW
dc.description.abstractSingle-photon avalanche diode (SPAD) is widely used in medical electronics, optical fiber communication, automatic driving systems, etc. In the past, InGaAs was mainly used as the absorption layer and InP was used as the multiplication layer material. However, using InAlAs as a multiplication layer has a higher avalanche probability, and it is expected to have a higher photon detection efficiency. In addition, InAlAs is less sensitive to temperature, so the operating temperature is more flexible; Furthermore, in order to further improve the photon detection efficiency, we incorporate a distributed Bragg reflector at the bottom of the N contact layer, and the high reflection of the distributed Bragg reflector is applied to prolong the stay of the incident photon in the device, so that the absorption probability can be improved, thereby improving the photon detection efficiency. Therefore, this study adopts InAlAs as multiplication layer and incorporates the distributed Bragg reflector structure for further investigation. The device was processed into mesa type, which relies on the etching to define the active detection size of the device. Sulfur treatment is performed on the exposed side wall and following a passivation layer is applied to reduce the leakage current of the device. The last we deposited the cathode and anode of the device. The chip was wire bonded to the circuit board to perform the subsequent measurements. By operating the SPAD under different excess bias voltage, operating frequency and temperature, we can comprehensively characterize the SPAD and thoroughly study the physics behind. The breakdown voltage of the device at room temperature is 32.7 volts, the temperature coefficient is 10 mV/K; Under the operating conditions of pulse width of 5 ns, temperature of 187.5 K, and excessive bias of 4.0 %, the single photon detection efficiency reaches 1.7%, dark count probability was 9.6%. By using the illuminated double-gate method, the probability of afterpulsing is less than 1 % under the repetition rate of 20 kHz. The timing jitter is reduced to 59ps when the excessive bias increases to 5.5%.en_US
DC.subject崩潰二極體zh_TW
DC.title具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析zh_TW
dc.language.isozh-TWzh-TW
DC.titleDesign and Characteristics of InGaAs/InAlAs Single-Photon Avalanche Diodes with Distributeden_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明