博碩士論文 108388001 完整後設資料紀錄

DC 欄位 語言
DC.contributor能源工程研究所zh_TW
DC.creator鄭博駿zh_TW
DC.creatorPo-Chun Chengen_US
dc.date.accessioned2023-10-24T07:39:07Z
dc.date.available2023-10-24T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=108388001
dc.contributor.department能源工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本研究第一部份旨在為甲烷燃料質子陶瓷燃料電池(PCFC)開發一種比傳統 Ni-BCZY 陽極更好的耐碳陽極。採用固相反應製程製備PCFC中Ni1-xCux-BCZY合金陽極。Ni中摻雜Cu,並在甲烷及氫氣下對陽極支撐型之單電池進行了性能曲線及電化學阻抗頻譜的量測與分析,結果得知當通入氫氣及甲烷時Ni0.9Cu0.1電池皆表現出最佳之電池性能,最高功率密度分別達到409.5 mW/cm2及177.6 mW/cm2,有此可知參雜少量的銅能夠不影響通入甲烷時之電池性能,而參雜的銅過多則使電池性能降低。這項工作證明了採用 Ni1-xCux -BCZY 合金陽極於甲烷燃料之可用性,有助於開發以甲烷做為燃料用於固體氧化物燃料電池發電之合金陽極。 本研究第二部份為了獲得緻密、高品質的電解質,質子陶瓷燃料電池(PCFC)中的質子傳導電解質BaCe0.6Zr0.2Y0.2O3 (BCZY)的燒結應在相對較高的溫度下進行。然而,在多孔陽極基底和電解質薄膜共燒結時,高燒結溫度往往會導致NiO-BCZY陽極粗化,從而減少H2氧化的電催化活性位點數量。 以及降低電池性能。提出了一種可擴展的奈米球磨製程來降低電解質燒結溫度,以維持 PCFC 陽極中的三相邊界、良好的電子和質子傳輸。透過使用奈米球磨製程,生產出的BCZY奈米粒子的直徑減少了一半以上(從 297 nm 到 131 nm)。可以降低共燒結溫度。在1400 ℃下燒結的電池表現出最高功率密度490 mW/cm2,比非奈米製程高38%。電池性能的顯著改善可歸因於較低的共燒結溫度,從而減少了 NiO 陽極的粗化。這保留了更多數量的H2電催化活性位點 電化學阻抗測量顯示電荷轉移電阻降低了 50%,證明了電池運作中 Ni 的氧化作用。 進一步將奈米粉末應用於陽極功能層,將球磨4小時之奈米粉末(135.4 nm)運用於固態氧化物燃料電池之陽極功能層,製備不同奈米AFL層分別為一層奈米AFL、二層奈米AFL及原始和奈米結合之複合AFL,其功率密度分別為286.1 mW/cm2、463.3 mW/cm2及534.1 mW/cm2,可以發現原始和奈米結合之複合AFL其電池性能有明顯提升相較於原始陽極功能層時其功率密度增加9%。進一步透過EIS分析可以看到複合AFL其活化極化RPh有明顯的下降趨勢,由於奈米AFL平均顆粒直徑減少一半,進而增加更多的三相介面導致活化極化降低。由結果得知本研究將奈米製程應用於AFL可以有效增加與電解質間的界面接觸進而降低歐姆阻抗及極化阻抗,進一步提升電池性能。 本研究第三部份提出一種能夠改善電解質多孔界面層與電解質之間接觸界面的新方法,透過共燒結多孔界面層與電解質之方法可以達到較好的接觸界面,降低電池內的界面阻抗進而實現更高的功率密度。研究結果顯示,共燒結之電解質多孔界面層電池於800 ℃下測得最大功率密度為429.3 mW/cm2,相較於預燒結之電解質多孔界面層電池(336.4 mW/cm2)其電池最大功率密度提升了17.2%,歐姆阻抗降低約30.8%。由結果得知透過共燒結多孔界面層與電解質之方法可以達到較好的接觸界面降低阻抗,進一步改善PCFC之電池性能。zh_TW
dc.description.abstractThe first part of this study aimed to develop a carbon-resistant anode for methane-fueled protonic ceramic fuel cells (PCFC) that is better than the conventional Ni-BCZY anode. The Ni1-xCux-BCZY alloy in the PCFC anode was prepared using a solid-state reaction process. Ni is doped with Cu to the anode-supported single cell′s performance curve and electrochemical impedance spectrum were measured and analyzed under methane and hydrogen. The results showed that the Ni0.9Cu0.1 cell performed best when introduced to hydrogen and methane. Regarding cell performance, the highest power density reached 409.5 mW/cm2 and 177.6 mW/cm2, respectively. Results show that doping a small amount of cobalt will not affect the cell performance when introducing methane. On the other hand, doping too much copper will reduce cell performance. This work demonstrates the usability of the Ni1-xCux-BCZY alloy anode for methane fuel, and helps to develop alloy anodes for solid oxide fuel cell power generation using methane. The second part of this study aims to obtain a dense, high-quality electrolyte. The proton conducting electrolyte BaCe0.6Zr0.2Y0.2O3 (BCZY) sintering for the protonic ceramic fuel cell (PCFC) was carried out at a relatively high temperature. However, when the porous anode substrate and the electrolyte film are co-sintered, the high sintering temperature often leads to the coarsening of the NiO-BCZY anode, thereby reducing the number of electro-catalytic active sites for H2 oxidation and reduced cell performance. A scalable nanoball milling process is proposed to reduce the electrolyte sintering temperature to maintain a three-phase boundary and enhance electron and proton transport in PCFC anodes. Using the nanoball milling process, the BCZY nanoparticles′ diameter was reduced by more than half (from 297 nm to 131 nm). The co-sintering temperature can be lowered. The cell sintered at 1400 °C showed the highest peak power density of 490 mW/cm2, 38% higher than the non-nano-milling process. The significant improvement in cell performance can be attributed to the lower co-sintering temperature, which reduces the coarsening of the NiO anode. This preserves a more substantial number of H2 electrocatalytically active sites. Electrochemical impedance measurements show a 50% reduction in charge transfer resistance, demonstrating the oxidation of Ni in cell operation. The nano-powder was further applied to the anode functional layer. The nano-powder (135.4 nm) was ball-milled for 4 hours and applied to the anode functional layer of the solid oxide fuel cell to prepare different nano AFL layers, including one layer of nano AFL and two layers of nano AFL. The power densities of the layered nano-AFL, the original, and nano-combined composite AFL are 286.1 mW/cm2, 463.3 mW/cm2, and 534.1 mW/cm2, respectively. It can be found that the cell performance of the original and nano-combined composite AFL has been significantly improved. Compared with the original anode functional layer, its power density increases by 9%. Further EIS analysis shows that the activation polarization RPh of composite AFL has a clear downward trend. Since the average particle diameter of nano-AFL is reduced by half, more three-phase interfaces are added, decreasing activation polarization. It is known from the results that the application of the nanometer manufacturing process to AFL in this study can effectively increase the interface contact with the electrolyte, reduce ohmic impedance and polarization resistance, and further improve cell performance. The third part of this study proposes a new method that can improve the contact interface between the porous interface layer and the electrolyte. By co-sintering the porous interface layer and the electrolyte, a better contact interface can be achieved, and the interface impedance in the cell can be reduced. This results in higher power density. This research results show that the maximum power density of the co-sintered electrolyte porous interface layer cell measured at 800°C is 429.3 mW/cm2. Compared with the pre-sintered electrolyte porous interface layer cell (336.4 mW/cm2), the maximum power density of the cell is improved by 17.2%, and the ohmic impedance is reduced by about 30.8%. The results show that by co-sintering the porous interface layer and the electrolyte, a better contact interface can be achieved to reduce the impedance and further improve the cell performance of PCFC.en_US
DC.subject質子陶瓷燃料電池zh_TW
DC.subject鎳銅合金zh_TW
DC.subject甲烷zh_TW
DC.subject奈米球磨zh_TW
DC.subject共燒結溫度zh_TW
DC.subject陽極粗化zh_TW
DC.subject複合陽極功能層zh_TW
DC.subject多孔層zh_TW
DC.subjectProtonic ceramic fuel cellsen_US
DC.subjectNiCu alloyen_US
DC.subjectMethaneen_US
DC.subjectNanomillingen_US
DC.subjectCo-sintering temperatureen_US
DC.subjectAnode coarseningen_US
DC.subjectComposite anode functional layeren_US
DC.subjectPorous layersen_US
DC.title提升質子陶瓷燃料電池性能之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleStudy on Performance Enhancement of Protonic Ceramic Fuel Cell (PCFC)en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明