博碩士論文 108521008 完整後設資料紀錄

DC 欄位 語言
DC.contributor電機工程學系zh_TW
DC.creator柯尊傑zh_TW
DC.creatorTsun-Jie Koen_US
dc.date.accessioned2021-9-17T07:39:07Z
dc.date.available2021-9-17T07:39:07Z
dc.date.issued2021
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=108521008
dc.contributor.department電機工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstractThe objective of this work is to develop molecular beam epitaxy (MBE) technology of InAs/GaSb type-II superlattices (T2SLs) on GaSb substrates for mid-infrared photodetectors. There are three major challenges in growing high quality T2SLs. First, to obtain an oxide-free and smooth GaSb surface for the growth of GaSb buffer layer. Second, to compensate the mismatch (0.6 %) in lattice constant between InAs and GaSb for minimal residual strain in the sample. Third, to maintain a sharp arsenide/antimonide hetero-interface throughout the entire T2SL, which typically has 100 or more periods, for high optical quantum yield. The mini-bands of InAs/GaSb superlattices are also investigated by simulated. The simulation results show that the transition energy between the mini-bands in the conduction band and valence band is mainly determined by the thickness of the InAs layer. Increase the thickness of InAs layer from 4 ML to 10 ML, the transition shows a wavelength red shift from 2.4 μm to 4.9 μm. The InSb strain compensation layer plays a minor role because its thickness is less than 1 ML in the samples of interest. The difference in the simulated and experimental transition energies is within 3 %. In this study, T2SLs with 77 K luminescence at 2.8 μm, 2.9 μm, and 4.1 μm have been grown on GaSb. GaSb buffer with a full width at half maximum (FWHM) of the x-ray diffraction (XRD) rocking curve as low as 15.7 arcsec has been achieved. The tensile strain in InAs is successfully compensated by inserting an InSb layer in the middle of InAs/GaSb interfaces. A residual strain less than 0.1 % is achieved as evidenced by XRD analysis. Using arsenic tetramer (As4) instead of dimer (As2) for the growth of InAs to avoid arsenide/antimonide intermixing, T2SLs with a 77 K photoluminescence (PL) linewidth of 30 meV are obtained. The XRD (-1) satellite peak exhibits a linewidth of 40 arcsec, confirming the abruptness of the heterointerface.zh_TW
dc.description.abstractThe objective of this work is to develop molecular beam epitaxy (MBE) technology of InAs/GaSb type-II superlattices (T2SLs) on GaSb substrates for mid-infrared photodetectors. There are three major challenges in growing high quality T2SLs. First, to obtain an oxide-free and smooth GaSb surface for the growth of GaSb buffer layer. Second, to compensate the mismatch (0.6 %) in lattice constant between InAs and GaSb for minimal residual strain in the sample. Third, to maintain a sharp arsenide/antimonide hetero-interface throughout the entire T2SL, which typically has 100 or more periods, for high optical quantum yield. The mini-bands of InAs/GaSb superlattices are also investigated by simulated. The simulation results show that the transition energy between the mini-bands in the conduction band and valence band is mainly determined by the thickness of the InAs layer. Increase the thickness of InAs layer from 4 ML to 10 ML, the transition shows a wavelength red shift from 2.4 μm to 4.9 μm. The InSb strain compensation layer plays a minor role because its thickness is less than 1 ML in the samples of interest. The difference in the simulated and experimental transition energies is within 3 %. In this study, T2SLs with 77 K luminescence at 2.8 μm, 2.9 μm, and 4.1 μm have been grown on GaSb. GaSb buffer with a full width at half maximum (FWHM) of the x-ray diffraction (XRD) rocking curve as low as 15.7 arcsec has been achieved. The tensile strain in InAs is successfully compensated by inserting an InSb layer in the middle of InAs/GaSb interfaces. A residual strain less than 0.1 % is achieved as evidenced by XRD analysis. Using arsenic tetramer (As4) instead of dimer (As2) for the growth of InAs to avoid arsenide/antimonide intermixing, T2SLs with a 77 K photoluminescence (PL) linewidth of 30 meV are obtained. The XRD (-1) satellite peak exhibits a linewidth of 40 arcsec, confirming the abruptness of the heterointerface.en_US
DC.subject第二型超晶格zh_TW
DC.subject分子束磊晶zh_TW
DC.subject中波長紅外線zh_TW
DC.subjectType-II Superlatticeen_US
DC.subjectMolecular beam epitaxyen_US
DC.subjectmid-infrared photodetectorsen_US
DC.title分子束磊晶成長InAs/GaSb第二型超晶格以應用於中紅外光偵測器zh_TW
dc.language.isozh-TWzh-TW
DC.titleMolecular Beam Epitaxial Growth of InAs/GaSb Type-II Superlattice for Mid-Infrared Photodetectorsen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明