博碩士論文 108681601 完整後設資料紀錄

DC 欄位 語言
DC.contributor大氣科學學系zh_TW
DC.creator鄭顯威zh_TW
DC.creatorJackson Chang Hian Weuien_US
dc.date.accessioned2023-1-3T07:39:07Z
dc.date.available2023-1-3T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=108681601
dc.contributor.department大氣科學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract近年來快速的城市化對局部範圍的大氣環流產生了深遠的影響,但對於控制對流層臭氧濃度的物理及化學反應機制仍然沒有完整的解釋。台灣由於嚴格的排放政策,相較於1994年,現今氮氧化物(NOx)和揮發性有機化合物(VOCS)的環境濃度已減少將近60%。然而,減少這些前驅物並未使臭氧的年均濃度呈現線性的變化,在過去的十年間反而出現增加或趨於平緩的趨勢。因此,必須廣泛調查城市對於對流層臭氧化學的影響,以制定有效減少臭氧排放的方針。本研究針對台灣南部地區,其為一個由沿海城市、工業園區和內陸山區所組成的複雜區域,並經常於換季的時候(4-5月及10-11月)發生高臭氧事件。在本篇論文中,吾人將使用城市規模解析度1.0 x 1.0 公里的WRF-CMAQ模式,模擬臭氧及其前驅物(如:NOx 、VOCS)的時空分布。 首先,吾人調查城市地表和當地環流的相互作用對當地氣候和臭氧空氣品質造成的影響。並對使用相同排放源但不同的特定地區進行了兩次模擬:城市情形代表當前城市化的現況;非城市情形則用農田取代所有城市網格。結果顯示,當城市熱島(UHI)氣流匯聚並停滯在城市上空時,會形成環流並將污染物困在較高的高度,並發現在1000-1500公尺的高空,羥基自由基與VOC的反應增加2.0-2.4 ppbv h-1。在夜間,城市情形因為較深的邊界層使NOx混合比稀釋了17 ppbv,同時也削弱滴定效應,導致市區臭氧濃度升高了15 ppbv。當UHI垂直混合減弱時,臭氧會從高空向下擴散至地表並進一步降低夜間的空氣品質。 再者,吾人針對台灣南部城市及內陸地區邊界層內的O3、NOx和NMHC進行收支調查。在近地表的收支中,化學過程和乾沉降是使O3匯入的主要原因,並且分別貢獻10 ppbv h-1 和15 ppbv h-1以上;近地表的O3垂直擴散超過30 ppbv h-1。在邊界層收支中,化學過程是O3主要來源,而垂直擴散也會使O3匯入。物理化學牽涉近地表污染物的垂直擴散並增強PBL層上層的光化學反應來產生O3,並佔據城市中O3的主要地位。這種垂直交換的過程主要是因為大氣能夠垂直擴散的結果,並隨高度增加逐漸地減弱交換效率。本研究結果發現白天的海風環流會將城市中受污染的氣團推向內陸,並且因為NOx的限制條件,大大增強了內陸臭氧的生成,因此即使控制內陸地區的NOx排放,也會受海陸風影響而沒有成效,然而大部分的城市地區,由於VOC的限制條件,控制VOC排放有助於降低O3的排放。 最後,吾人基於CMAQ-PMF開發一個綜合指數,用來確認VOC的來源種類對於減少臭氧生成的貢獻性。利用 CMAQ-Higher Direct Decouple Method (HDDM) 確認研究區域的臭氧濃度對全域(即城市、郊區和農村)所排放之NOx和VOC的一階、二階交叉敏感性(cross sensitivities)。並發現南台灣城市地區(內陸地區)的臭氧生成敏感度因子,主要受在VOC限制條件(NOx限制條件下)下的NOx負一階敏感度主導。大部分城市地區表明負O3凸反應曲線對NOx排放表現出負二階敏感度,其中 NOx因排放很大程度上被非線性效應減弱而使O3線性增加。由於嚴格的VOC限制政策和減少或增加NOx排放對生成O3相對地不敏感,本研究追求對臭氧形成最大貢獻VOC種類。VOC使用PMF分析並解決八個因素,包括混合工業(21%)、車輛排放(22%)、溶劑使用(17%)、生物源(12%)、塑膠工業(10%)、老化氣團(7%)、機車尾氣(7%)和製造業(5%)。研究結果顯示基於CMAQ-PMF的綜合指數,VOC的控制措施應優先考慮以下排放源:(1)油漆、塗料及印刷業對容易的使用,會排放大量的甲苯和二甲苯;(2)汽油車所排放的n-丁烷、異戊烷、異丁烷和n-戊烷;(3)石化業排放的乙烯及丙烯。 zh_TW
dc.description.abstractRecent rapid urbanization has had a profound impact on local-scale atmospheric circulation but its impacts on the physical and chemical processes controlling the tropospheric ozone remain poorly resolved. In Taiwan, due to the strict emission policy, the ambient concentrations of nitrogen oxides (NOx) and volatile organic compounds (VOCs) have reduced by nearly 60% since 1994. However, such reduction in precursors has not been linearly reflected on the annual mean ozone concentration, but an increasing or flattening trend is seen in the last decade. Therefore, a comprehensive investigation on the urban impacts on tropospheric ozone chemistry is necessary for prescribing an effective ozone abatement strategy. Our study area focuses on southern Taiwan, a complex region of coastal urban and industrial parks and inland mountainous areas, where high ozone episode often occurs during the seasonal transition period (i.e. Apr-May and Oct-Nov). In this thesis, we modelled the spatial and temporal distribution of ozone and its precursors (i.e. NOx and VOCs) using WRF-CMAQ model at urban scale resolution 1.0 x 1.0 km. Firstly, we investigated the impacts of urban land-surface forcing and its interaction with local circulations on local meteorology and ozone air quality. Two simulations were performed with the same emissions but different land cover designations: URBAN scenario represents the current urbanized condition and NO-URBAN scenario replaces all urban grid cells with cropland. It was shown that when the urban-heat-island (UHI) convergent flow stalls over the city, a circulation flow is formed and traps the pollutants at an elevated height, increasing the reaction of hydroxyl radical with VOCs by 2.0-4.0 ppbv h-1 at 1000-1500 m. At nighttime, the deeper boundary layer of URBAN scenario diluted NOx mixing ratio by 17 ppbv and weakened the titration effect, causing higher O3 concentration by 15 ppbv in the urban area. When the UHI vertical mixing diminished, the O3 aloft diffused downward to the surface level and further degraded the nighttime air quality. Secondly, we examined the budget analysis of boundary-layer O3, NOx and NMHC over the urban and inland area of southern Taiwan. In the near-surface budget, chemical process and dry deposition are the main sink of O3 with the contribution more than 10 ppbv h-1 and 15 ppbv h-1, respectively; the major source of near-surface O3 is vertical diffusion exceeding 30 ppbv h-1. In the boundary-layer budget, chemical process is the main source while vertical diffusion becomes the sink for O3. The physiochemical circulation involves the vertical transport of near-surface pollutants and enhances photochemical production of O3 in the upper PBL level is dominant in urban areas. This vertical exchange is mainly attributed to the vertical diffusion process and gradually decreases with heights. Our results highlighted the important role of daytime sea breeze circulation pushing the polluted urban air masses into the inland region which greatly enhanced the inland O3 production due to the NOx-limited condition. Thus, control of NOx emission in inland area may be ineffective due to the dynamics role of land-sea breeze; whereas most of the urban areas are characterized by VOC-limited condition where control of VOCs emission is helpful to reduce urban O3 concentration. Thirdly, we developed a CMAQ-PMF-based composite index to identify the key VOC source-species for effective ozone abatement strategy. First-order, second-order and cross sensitivities of ozone concentrations to domain-wide (i.e. urban, suburban and rural) NOx and VOC emissions were determined for the study area using CMAQ-Higher Direct Decoupled Method (HDDM). Negative (positive) first-order sensitivities to NOx emissions are dominant over urban (inland) areas, confirming ozone production sensitivity favors the VOC-limited regime (NOx-limited regime) in southern Taiwan. Most of the urban areas exhibited negative second-order sensitivity to NOx emissions, indicating a negative O3 convex response where the linear increase of O3 from decreasing NOx emissions was largely attenuated by the non-linear effects. Due to the solidly VOC-limited regime and the relative insensitivity of O3 production to increases or decreases of NOx emissions, this study pursued the VOC species that contributed the most to ozone formation. PMF analysis driven by VOCs resolved 8 factors including mixed industry (21%), vehicle emissions (22%), solvent usage (17%), biogenic (12%), plastic industry (10%), aged air mass (7%), motorcycle exhausts (7%), and manufacturing industry (5%). Based on the CMAQ-PMF-based composite index, our results indicate that VOC control measures should prioritize (1) solvent usage for painting, coating and the printing industry, which emits abundant toluene and xylene, (2) gasoline fuel vehicle emissions of n-butane, isopentane, isobutane and n-pentane, and (3) ethylene and propylene emissions from the petrochemical industry. en_US
DC.subject對流層臭氧zh_TW
DC.subject臭氧減少zh_TW
DC.subject都市zh_TW
DC.subjecttropospheric ozoneen_US
DC.subjectozone abatementen_US
DC.subjecturbanen_US
DC.title使用基於CMAQ-PMF的綜合指數探討對流層臭氧化學對都市的影響及臭氧減少策略zh_TW
dc.language.isozh-TWzh-TW
DC.titleUrban impacts on tropospheric ozone chemistry and ozone abatement strategy using a CMAQ-PMF-based composite indexen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明