dc.description.abstract | With the rapid development of technology and communication technology, the team can use remote-operated robots to monitor various environmental data, break the traditional thinking in the field of civil engineering, and integrate the era of human-robot collaboration. According to the revised regulations of the "Highway and Bridge Inspection and Reinforcement Specifications" and "Highway Maintenance Specifications" promulgated by the Ministry of Communications of Taiwan in 2020, the highway maintenance agency should conduct regular bridge inspections, major accidents, or disasters. The crisis awareness of inspection has been improved. As for the traditional detection methods of bridge structures, for example, personnel are often in dangerous working environments, including high-altitude operations or closed narrow maintenance channels, which bring much inconvenience to detection and over-reliance on large-scale auxiliary equipment. The equipment and the various protective equipment that must be installed all generate additional construction costs. In recent years, management efficiency has been poor due to the lack of human resources, and the fiscal revenue levels of various local governments have been uneven—unnecessary manufactured disasters caused by regular inspection operations.
The core purpose of this research is to introduce the engineering community and commercialization as the starting point. In the initial development stage, the focus will be on design analysis, and in the later stage, it will be applied to a new bridge inspection and climbing robot mediated by steel structures through practical verification (HMICRobot). Various climbing forms are developed from relevant international research materials. Among them, the 2-legged bionic cockroach robot best meets the actual climbing needs and legal restrictions. Under this framework, 7 model versions are optimized and designed in sequence. HMICRobot is the current final entity. The modified version can satisfy most climbing fields in three-dimensional plane space. In addition, through mechanism optimization, mechanism material application, mechanical virtual prototyping development tool (ADAMS multi-body dynamics software), and electromechanical integration, five kinds of applications were designed for HMICRobot to be applied to steel structure bridge climbing paths and static balance analysis for buckles. Because it is the first generation of physical models, the influence of dynamic effects is excluded first, so it is conducive to early detection of design flaws in the development stage. In the experimental stage, the climbing robot was introduced into the closed field, and the steel plate was erected to simulate the internal conditions of the steel bridge for testing to verify the feasibility evaluation of the climbing adhesion and torque parameter values. In addition, the difference between HMICRobot and other similar climbing robots is that it integrates the advantages of foot type (high mobility) and wheel type (fast speed). Easily use the rollers and arms to touch the wall, increase the climbing combination and high mobility of the climbing robot, make it a vehicle that can be equipped with inspection equipment, and prove that this research and development has been able to complete the climbing task in an operational mode. | en_US |