博碩士論文 109329013 完整後設資料紀錄

DC 欄位 語言
DC.contributor材料科學與工程研究所zh_TW
DC.creator邱敬庭zh_TW
DC.creatorChing-Ting Chiuen_US
dc.date.accessioned2022-8-3T07:39:07Z
dc.date.available2022-8-3T07:39:07Z
dc.date.issued2022
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=109329013
dc.contributor.department材料科學與工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract高熵材料相關研究開展至今已逾二十年,過往的研究都集中探討高熵合金於機械強度、延展性、熱穩定性等機械性質之強化。近年來,綠能材料的需求越發增加,目光逐漸放在高熵材料於功能性材料的研究上,並也證實高熵材料由於其高熵效應以及多元素之間的協同效應,能有效地增加各個催化反應的活性以及穩定性,為高熵材料的應用方向開創出不同的方向。芬頓反應是一種常見於工業污染處理技術,但該反應中所需的過氧化氫具有高度的風險性,並且反應副產物為大量的鐵淤泥沉積物,大大增加了汙染物處理的成本。為了解決這個問題,本文將以快速煆燒裂解法將AlCrCuFeNi混合硝酸金屬鹽前驅物還原成(AlCrCuFeNi)O高熵陶瓷,並將高熵陶瓷與石墨烯組合成一複合式奈米觸媒,透過此奈米觸媒於電芬頓法進行降解汙染物的研究,並評估功能性高熵材料分解汙染物的潛力。石墨烯/(AlCrCuFeNi)O高熵陶瓷製成之陰極增強了電芬頓過程中H2O2的生成,(AlCrCuFeNi)O高熵陶瓷提高了電催化活性和穩定性。由於高熵陶瓷的高電芬頓效率,石墨烯/(AlCrCuFeNi)O高熵陶瓷陰極相比於石墨烯以及(AlCrCuFeNi)O高熵陶瓷,前者在反應的90分鐘內能有效地去除99%的甲基橙,此外,其電芬頓效果在經過四次的重複性試驗後,仍能保持約80%的效能。最後,在此研究中,已成功比較有無添加捕捉劑之電芬頓效果,驗證了電芬頓法確實是由氫氧自由基分解汙染物,而超氧自由基是作為過氧化氫生成的活性中間體。zh_TW
dc.description.abstractResearch on high-entropy materials has been conducted for more than 20 years. In the past, research has focused on the enhancement of mechanical properties such as mechanical strength, ductility, and thermal stability of high-entropy alloys. In recent years, the demand for green energy materials has been increasing, and the attention has been focused on the research of high entropy materials for functional materials. In the meantime, related research has also confirmed that high-entropy materials can effectively increase the activity and stability of various catalytic reactions due to their high-entropy effect and the synergistic effect between multiple elements, opening up different directions for the application of high-entropy materials. The Fenton reaction is a commonly used technique for the remediation of industrial pollution, but hydrogen peroxide required in this reaction is highly hazardous and the enormous volume of iron sludge byproducts increases significantly the cost of pollution remediation. To address this issue, this study examined the efficacy of the electro-Fenton reaction in degrading pollutants utilizing a complex of graphene and a high-entropy ceramic catalyst, and evaluated the potential of functionalized high-entropy materials for the decomposition of pollutants. The degradation of organic water contaminants was investigated utilizing a novel composite of graphene and (AlCrCuFeNi)O high-entropy ceramics, to increase the generation of H2O2 in the electro-Fenton process. Rapid calcination pyrolysis produced (AlCrCuFeNi)O high-entropy ceramics to enhance both the electrocatalytic activity and the stability. Because of the high electro-Fenton efficiency of the high-entropy ceramics, the graphene/(AlCrCuFeNi)O HEC cathode effectively removed 99 % methyl orange within 90 min of operation.en_US
DC.subject電觸媒zh_TW
DC.subjectH2O2生成zh_TW
DC.subject高熵陶瓷zh_TW
DC.subject電芬頓法zh_TW
DC.subject汙水降解zh_TW
DC.subjectElectrocatalysten_US
DC.subjectH2O2 productionen_US
DC.subjectHigh-entropy ceramicsen_US
DC.subjectElectro-Fenton reactionen_US
DC.subjectWater pollution degradationen_US
DC.title石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討zh_TW
dc.language.isozh-TWzh-TW
DC.titlePreparation of graphene/high-entropy nano ceramic catalyst and degradation of organic pollutanten_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明