博碩士論文 110223030 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學學系zh_TW
DC.creator連家緯zh_TW
DC.creatorJia-Wei Lianen_US
dc.date.accessioned2023-7-19T07:39:07Z
dc.date.available2023-7-19T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=110223030
dc.contributor.department化學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文分為兩部分,第一部分將硝酸錳作為金屬離子前驅物,1,3,5-苯三甲 酸作為有機配位基,加入添加劑聚乙烯吡咯烷酮,製備成有機金屬骨架前驅物 MnBTC,並探討最佳鍛燒硫化溫度,接著將硝酸錳和硝酸鋅作為金屬離子前驅 物,製備成雙金屬有機金屬骨架前驅物 Mn/ZnBTC,並經過 700 ℃鍛燒硫化得 到氮摻雜碳修飾硫化錳硫化鋅複合材(Mn,Zn)S/N-C,應用於鋰、鈉離子電池負極 材料,其中(Mn,Zn)S/N-C (1-1)具有最好的電化學表現,組裝鋰離子電池半電池 在電流密度 0.1 A/g 下循環 100 圈有 1003 mAh/g 的比容量,組裝成鈉離子電池 半電池在電流密度 0.05 A/g 下循環 100 圈有 288.6 mAh/g 的比容量,和正極材料 磷酸鐵鋰組成全電池的實際應用在 0.1 C 下充放電 100 圈有 40.6 mAh/g 的可逆 比容量且庫倫效率高達 95.7 %。 第二部分以第一部分的有機配位基為基礎,金屬離子前驅物使用硝酸銅和 硝酸鎳合成有機金屬骨架前驅物 Cu/NiBTC,經過 500 ℃鍛燒硫化後得到硫化銅 硫化鎳複合材,不同鎳加量的複合材作為鋰離子電池負極材料進行循環穩定性 測試可以發現複合材有鎳的情況下,相比於硫化銅複合材,雙金屬的複合材的比 容量、維持率和鋰離子擴散係數會提升,在半電池充放電測試中 Cu1.96S/Ni3S2-50 具有最好的循環穩定性,電流密度 1 A/g 下循環 250 圈有 167 mAh/g 的比容量, 而 0.1 A/g 下循環 100 圈有 385.5 mAh/g 的比容量。zh_TW
dc.description.abstractMetal organic framework (MOFs) have been considered to be the ideal precursor for metal oxides, metal sulfides, metal selenides or carbon materials which can be used for anode of lithium and sodium ion batteries. In this work, use the metal organic framework based on manganese ion, and get manganese sulfide MnS by sulfurization, the best sulfurization temperature is 700 ℃. After finding the best sulfurization temperatue, then synthesis manganese and zinc bimetallic metal organic framework Mn/ZnBTC be the precursor and get the manganese and zinc sulfides decorated with nitrogen-doped carbon by sulfurization named (Mn,Zn)S/N-C. Then find the ratio of manganese and zinc which has the best electrochemical performance for anode material. Finally, (Mn,Zn)S/N-C(1-1) exhibits the most great electrochemical performance in half-cell lithium ion batteries, it shows specific capacity of 1003 mAh/g after 100 cycles at a current density 0.1 A/g. And in half-cell sodium ion battery, it demonstrates a specific capacitance of 266.8 mAh/g after 100 cycles at a current density of 0.05 A/g. In a full-cell configuration with lithium iron phosphate, it exhibits a reversible capacity of 40.5 mAh/g and a coulombic efficiency of approximately 95% after 100 cycles at 0.1 C. The second part is based on the same ligand from the first part. Copper nitrate and nickel nitrate are used as metal ion precursors to replace the manganese and zinc ions and synthesize organic metal framework precursors Cu/NiBTC. After sulfurization, copper sulfide and nickel sulfide composite materials are obtained. Then test the relation of electrochemical performance and nickel amount. It is observed that composites with nickel content, specific capacity of those composites can higher than copper sulfide. Among them, Cu1.96S/Ni3S2-50 exhibits the best cyclic stability, with a specific capacity of 385.5 mAh/g after 100 cycles at a current density 0.1 A/g. And also exhibits the highest lithium ion diffusion coefficient.en_US
DC.subject有機金屬骨架zh_TW
DC.subject鋰離子電池zh_TW
DC.subject過渡金屬硫化物zh_TW
DC.subjectMetal Organic Frameworken_US
DC.subjectLithium Ion Batteryen_US
DC.subjectTransition Metal Sulfideen_US
DC.title有機金屬骨架衍生之氮摻雜碳修飾硫化錳硫化鋅複合材及硫化銅硫化鎳複合材作為鋰(鈉)離子電池負極材料之應用zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明