博碩士論文 110223085 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學學系zh_TW
DC.creator彭梓瑜zh_TW
DC.creatorPENG,ZIH-YUen_US
dc.date.accessioned2023-6-28T07:39:07Z
dc.date.available2023-6-28T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=110223085
dc.contributor.department化學學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文以雙噻吩醯亞胺 (Bithiophene-imide, BTI) 為核心,開發出六種電洞傳輸層材料(Hole transport martials, HTMs)應用於鈣鈦礦太陽能電池中,並依照不同元件製成方式分為兩個系列。 本研究第一系列開發出兩種自組裝單分子膜(Self-assembled monolayer, SAM),以不同碳鏈長之雙噻吩醯亞胺(Bithiophene-imide, BTI)為核心,於一端接上推電子基團三苯胺(Triphenylamine, TPA),另一端則接上錨定基團丙二腈乙烯基(malononitrile),成功合成出 BTI-8-MN (1) 及 BTI-16-MN (2) 兩種材料,以自組裝的方式製成元件應用於錫鈣鈦礦太陽能電池。目前已將 BTI-8-MN (1) 和 BTI-16-MN (2) 進行元件測試,初步測試結果顯示 BTI-8-MN (1) 已可達到 6% 的光電轉換效率。 本研究第二部份亦開發一系列之電洞傳輸層材料,以旋轉塗布(spin coating)的方式製成元件,應用於鈣鈦礦太陽能電池中。同樣以BTI為核心,外接具亞苯基咪唑基團(Triarylamine-functionalized Imidazolyl-capped group)作為推電子基團,並將分子內之咪唑基團接上正六烷的碳鏈,增加溶解度以提升成膜性,成功合成出不對稱之電洞傳輸層材料BTI-Im-3D (3)、BTI-Im6-3D (4)以及對稱的 BTI-Im-4D (5)、BTI-Im6-4D (6)四種材料。 為了更好的了解材料的電化學和光學性能,已藉 DPV 和 UV-Vis進行測定(如 HOMO / LUMO和 Eg),並通過TGA和DSC進行熱穩定性檢測。目前正在優化這些新開發的小分子光電材料元件,期望能進一步提高其效能。zh_TW
dc.description.abstractThis study focuses on the development of six hole transport materials (HTMs) based on bithiophene-imide (BTI) for application in perovskite solar cells. The HTMs are categorized into two series based on the different fabrication methods. In the first series, two self-assembled monolayers (SAMs) were developed by using BTI as the core. BTI core was functionalized with a triphenylamine (TPA) electron-donating group on one end and a malononitrile anchoring group on the other end. Two materials were successfully synthesized, namely BTI-8-MN (1) and BTI-16-MN (2), distinguished with different carbon chain lengths. These SAM-based HTMs were utilized in tin-based perovskite solar cells. Initial testing of BTI-8-MN (1) and BTI-16-MN (2) showed promising results, with BTI-8-MN (1) achieving a power conversion efficiency of around 6%. The second part of this study also involves the development of a series of hole-transporting layer materials for application in perovskite solar cells using spin coating. Based on BTI as the core, these materials are externally attached with triarylamine groups and internally modified with imidazole groups capped with a hexyl carbon chain to enhance solubility and improve film-forming properties. Four types of materials were successfully synthesized, the asymmetric hole-transporting layer materials BTI-Im-3D (3) and BTI-Im6-3D (4), as well as the symmetric materials BTI-Im-4D (5) and BTI-Im6-4D (6). To better understand the electrochemical and optical properties of these new materials (such as HOMO/LUMO and Eg), DPV and UV-Vis measurements were carried out, and thermal stability was tested by TGA and DSC. Further, these newly developed small-molecule optoelectronic material devices will be optimized to enhance performance.en_US
DC.subject雙噻吩醯亞胺zh_TW
DC.subject電洞傳輸層材料zh_TW
DC.title雙噻吩醯亞胺衍生物之 電洞傳輸層材料開發zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明