dc.description.abstract | In recent years, the world has gradually moved towards a new wave oriented towards green environmental resources and sustainable development. Due to the increase in population, rapid industrial and economic development, changes in human consumption habits, virtualization... and other factors, natural energy (resources) resources have Depletion, climate change, environmental pollution and the explosion of waste, environmental protection, natural energy reuse and reduction of greenhouse gas emissions have become the most important issues internationally.
Water resources are inextricably linked to climate change. Climate change will cause water circulation disorders and further cause an imbalance in the supply and demand of water resources. On the other hand, chemicals produced from the petrochemical industry are also the largest source of environmental pollution. Therefore, cherish water resources and reduce Water pollution has made it increasingly important to improve wastewater treatment technology.
This research plan takes "wastewater recycling" and "biological treatment module" as the starting point to develop the technology of "one-pot" process biological treatment module. The experimental design method is to recycle Gongwan Broth Wastewater (GBW) and put microbial strains into the waste culture medium (Microbial Waste Culture, MWC), and then put the microbial waste culture culture into the wastewater treatment plant to treat the wastewater purification. The water quality is then discharged to meet the increasingly stringent national water discharge standards.
The experimental results of this project in the actual mold factory: 1. For the removal of high-fat meat waste sludge, the average hydrolysis efficiency of protein is 33.82% (mold factory), 57.28% (laboratory), and the average hydrolysis efficiency of amino acids is respectively The averages are 11.15% (mold factory) and 29.83% (laboratory) respectively, and the average grease removal efficiency is 73.60%. 2. From March to August after the implementation of the plan, compared with March to August before the implementation of the plan, the amount of wastewater, pharmaceutical costs and sludge production were reduced, reducing treatment costs: the pharmaceutical cost per ton of wastewater operation was reduced by 13.4 ( dollar/ton), the amount of wastewater sludge per ton is reduced by 1.51 (kg/ton), and the monthly wastewater discharge is reduced by 261 (ton/month). 3. Using recycled wastewater as a substrate can replace expensive commercial culture media, saving resource waste and creating new energy sources. At the same time, it reduces wastewater discharge and reduces the load on the environment. 4. Use microbial enzyme hydrolysis treatment mode to change the properties of sludge and reduce the use of chemicals. 5. Inhibit and reduce the breeding of pathogenic and putrefactive microorganisms, parasitic animals and plants, remove the rancid smell in the factory area, and improve environmental quality.
The developed technology "one-pot" process biological treatment module effectively and successfully uses microorganisms to degrade liquid organic waste into non-toxic value-added products. For wastewater treatment, it can be operated with only a single tank, which is very convenient and does not produce Secondary pollution is in line with item 6 of the SDGs - ensuring that all people can enjoy water and sanitation and their sustainable management, item 12 - ensuring sustainable consumption and production patterns, and in line with the five plus two industry innovation plans. The circular economy promotion plan - energy resource integration and industrial symbiosis, is consistent with the win-win goals of environmental sustainability and industrial development. This plan can indeed provide a better wastewater treatment method for wastewater treatment in the current food industry. | en_US |