博碩士論文 110522110 完整後設資料紀錄

DC 欄位 語言
DC.contributor資訊工程學系zh_TW
DC.creator何名曜zh_TW
DC.creatorMing-Yao Hoen_US
dc.date.accessioned2023-7-25T07:39:07Z
dc.date.available2023-7-25T07:39:07Z
dc.date.issued2023
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=110522110
dc.contributor.department資訊工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract端到端倒傳遞(End-to-End backpropagatio, BP)是現今深度學習技術的重要基石。然而,隨著深度學習網絡的逐漸變深,使得 BP 也面臨挑戰。監督對比平行學習(Supervised Contrastive Parallel Learning, SCPL) 是一種解偶 BP 的新方法,其透過多個局部訓練目標與監督對比學習方式,使原本的深層網路的長梯度流轉換為多個短梯度流,並透過管線化的設計使不同層中的參數獨立訓練,進而達到比 BP 更快的訓練速度,以此解決 BP 在反向傳播中因反向鎖定(Backward Locking)而導致時間效率不佳的現象。 然而,SCPL 的原始論文並未實際實現平行化的參數訓外,也未在自然語言(NLP)領域中進行探討,因此本論文補足這些,並在視覺(Vision)領域與自然語言領域的資料集上進行準確率與平行化訓練時間的探討。藉此表現出本方法 SCPL 在這兩個領域中都能作為替代 BP 的一項新方法。此外,在研究的過程中發現一種 SCPL 的改進架構,使其可動態累加層(Dynamic Layer Accumulation)並有前向捷徑(Forward Shortcuts)與提早退出(Early Exit)的能力,本論文將這個新的架構稱為動態累加監督對比平行學習(Dynamic Accumulated Supervised Contrastive Parallel Learning, DASCPL)。也基於這兩個特性,使 DASCPL 比起 SCPL 有更高的彈性與靈活度,並與 SCPL 擁有一致的學習能力。zh_TW
dc.description.abstractEnd-to-End backpropagation (BP) is a cornerstone of modern deep learning techniques. However, as deep learning networks grow deeper, training networks by BP becomes challenging. Supervised Contrastive Parallel Learning (SCPL) is a novel approach that decouples BP by multiple local training objectives and supervised contrastive learning. It transforms the original deep network′s long gradient flow into multiple short gradient flows and trains the parameters in different layers independently through a pipelined design. This method achieves faster training speed than BP by addressing the inefficiency caused by backward locking in backpropagation. However, the original paper on SCPL did not practically implement parallel parameter training nor explore its application in the field of Natural Language Processing (NLP). This paper supplements these aspects and examines the accuracy and parallel training time of SCPL on datasets in both the vision and NLP domains. It demonstrates that SCPL can be a new alternative to BP in both domains. Additionally, we improved the architecture of SCPL, which enables dynamic layer accumulation, forward shortcuts, and early exits. This new architecture is called Dynamic Accumulated Supervised Contrastive Parallel Learning (DASCPL). Based on these two features, DASCPL offers higher flexibility and adaptability compared to SCPL while maintaining consistent learning capabilities.en_US
DC.subject倒傳遞zh_TW
DC.subject反向鎖定zh_TW
DC.subject監督對比損失函數zh_TW
DC.subject管線化zh_TW
DC.subject平行化訓練zh_TW
DC.subject模型平行化zh_TW
DC.subject前向捷徑zh_TW
DC.subject提早退出zh_TW
DC.subject動態累加層zh_TW
DC.subject監督對比平行學習zh_TW
DC.subjectBackpropagationen_US
DC.subjectBackward Lockingen_US
DC.subjectSupervised Contrastive Lossen_US
DC.subjectPipelineen_US
DC.subjectParallel Learningen_US
DC.subjectModel Parallelismen_US
DC.subjectForward Shortcuten_US
DC.subjectEarly Exiten_US
DC.subjectDynamic Layer Accumulationen_US
DC.subjectSupervised Contrastive Parallel Learningen_US
DC.title實現監督對比平行學習的參數同步更新、動態累加層、及前向捷徑zh_TW
dc.language.isozh-TWzh-TW
DC.titleRealizing Synchronized Parameter Updating, Dynamic Layer Accumulation, and Forward Shortcuts in Supervised Contrastive Parallel Learningen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明