博碩士論文 80221014 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator鄭宗琳zh_TW
DC.creatorTsung-Lin Chengen_US
dc.date.accessioned2000-7-18T07:39:07Z
dc.date.available2000-7-18T07:39:07Z
dc.date.issued2000
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=80221014
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract本論文共分兩部分: 第一部份. 線性過程之非同時泛函的收斂速率 令$X_n=sum_{i=1}^{infty}a_ivarepsilon_{n-i}$, 其中 $(varepsilon_i)_{i=-infty}^{infty}$ 為 iid, $Evarepsilon_1=0, Evarepsilon_1^2frac12$. 設 $K(x,y)$為Borel 可測函數. 這部分主要證明當$Q_N/sqrt{N}$滿足中央極限定理而其極限變異數為正數時, 它的Berry-Esseen 收斂速率. ($Q_N=sum_{n=1}^N [K(X_{n+t_1},X_{n+t_2})-EK(X_{n+t_1},X_{n+t_2})], t_1 藉由對$X_n$的線性結構的掌握, 除了動差(moment)的假設外, 對於$X_n$的分布函數並沒有其他假設, 我們期待$X_n$的非線性泛函能有一種正交展開式. 藉由對$K(X_{n+t_1},X_{n+t_2})$的展開式, 以及$ell$-逼近法, 我們可以使用Stein 的分區法(blocking), 將 $Q_N/sqrt{N}$的Berry-Esseen收斂速率求出來. 我們列出兩個重要的例子作為應用, 其中之一為Gaussian長記憶過程的過零數(zero-crossing)的漸進性質, 另外一個是關於Non-Gaussian短記憶過程隨機二元展開式句型頻率的極限問題. 第二部分. 非因果性移動平均的非線性轉換的極限定理 這部分主要在研究以下兩種非線性移動平均的漸進性質: (i). $K(X^-_n,X^+_n)$, (ii). H(X_n), 其中$X^-_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}, X^+_n=sum_{j=1}^{infty}b_jvarepsilon_{n+j-1}$, 且 $X_n=X^-_n+X^+_n$, 而 $(a_j)_{jge 1}, (b_j)_{jge 1}$ 為滿足$sum_{j=1}^{infty}(a^2_j+b^2_j)zh_TW
dc.description.abstractThe thesis is divided into two parts. Part I. Let $X_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}$, where $(varepsilon_i)_{i=-infty}^{infty}$ are iid with mean 0 and finite second moment and the $a_i$ are assumed $|a_i|=O(i^{- eta})$ with $ eta>frac12$. For a large class of Borel measurable functions $K(x,y)$, the Berry-Esseen type rate of convergence for $Q_N/sqrt{N}$, $Q_N=sum_{n=1}^N[K(X_{n+t_1},X_{n+t_2})-EK(X_{n+t_1},X_{n+t_2})], t_1 By fully exploring the linear structure of $X_n$, a new type of finite distribution-free orthogonal expansion is develope so that $Q_N$ can very well approximated by some random quantities which have nice structures and can be handled with less difficulty. At th end, we give two related examples as applications. One is concerning the zero crossing numbers for a Gaussian long-memory linear process and the other is about the frequency of a given pattern appearing in a random binary expansion. Part II. Consider the random vector $(X^-_n,X^+_n)$, where $X^-_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}$ and $X^+_n=sum_{j=1}^{n+j-1}$, where $(a_j)_{jge 1},(b_j)_{jge 1}$ are two sequences of real number satisfying $sum_{j=1}^{infty}(a^2_j+b^2_j)en_US
DC.subject中央極限定理zh_TW
DC.subject收斂速率zh_TW
DC.subject漸近性質zh_TW
DC.subject非因果移動平均zh_TW
DC.subject非同時泛函zh_TW
DC.subject短記憶過程zh_TW
DC.subject長記憶過程zh_TW
DC.subject非中央極限定理zh_TW
DC.subjectcentral limit theoremen_US
DC.subjectrate of convergenceen_US
DC.subjectasymptotic propertiesen_US
DC.subjectnoncausal moving averagesen_US
DC.subjectnoninstantaneous functionalen_US
DC.subjectshort-memory processen_US
DC.subjectlong-memory processen_US
DC.subjectnon-central limit theoremen_US
DC.title非線性移動平均的漸近性質zh_TW
dc.language.isozh-TWzh-TW
DC.titleAsymptotic properties of nonlinear moving averagesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明