博碩士論文 87323027 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator張乃文zh_TW
DC.creatorNi-Wen Chenen_US
dc.date.accessioned2000-7-5T07:39:07Z
dc.date.available2000-7-5T07:39:07Z
dc.date.issued2000
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=87323027
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract我們使用雷射斷層攝影術(Laser Tomography)來獲得預混紊焰於十字型燃燒器中央測試區之二維紊焰影像,共有六組在不同燃燒條件之實驗(CH4:f = 0.9和1.2在風扇轉頻各為10 Hz 和 30 Hz,共四組;C3H8:f = 0.9在風扇轉頻各為10 Hz 和 30 Hz,共兩組)。每一組實驗均含200個以上之相同實驗,從每個實驗中選取一張瞬時紊焰影像(紊焰平均位置正好位於均勻紊流場即測試區中心處),用所獲得之200張紊焰影像來進行統計分析,計算兩種理論模式下各自所需的參數。有關BML模式,我們火焰皺摺積分長度尺度 大致上維持一定值,約在0.4~0.5公分之間,與Lewis數無關;平均交角餘弦值 則在0.58~0.68之間與紊流強度和Lewis數無關;g值約為一常數2,與Chew et al. (1990)及Shy et al. (1996)的結果類似。在S-equation的結果中發現在各組實驗中的火焰的結構,主要部分(大於60%)在靠近生成物其曲率項為一正值(源項,source term),而在接近反應物時其曲率項為一負值(消耗項,consumption term),這與Veynante et al. (1994)及Poinsot and Trouve (1994)的結果有部分類似。此外,由兩種不同理論所各自求得的火焰表面密度值(S)十分相近並可以互相對照,其數值約為Veynante et al. (1994) V型火焰的結果的一半;並且發現Le (Lewis number)對於火焰表面密度的變化有影響。在Le > 1時,增加紊流強度,S值會隨著增加;Le < 1時,則幾乎不影響S值。zh_TW
dc.description.abstractThis study processes six cases with different combustion conditions (CH4, f = 0.9 and 1.2 at fan-stirred frequency 10Hz and 30Hz, 4cases; C3H8, f = 0.9 at fan-stirred frequency 10Hz and 30Hz, 2 cases. Laser Tomography technique is applied to obtain 2-D turbulent flame images. In each case, we conduct several hundreds experiments under the same conditions and choose images in which their mean positions are just at the center of near isotropic region. We gather 200 images, and alculate the unclosure terms for both model (BML model and S-equation). In BML model, integral length scale of flame wrinkling is about 0.4~0.5 cm, mean cosine value of crossing angle is a constant, about 0.58~0.68, and g value is very close 2. The results show good agreement with that of Chew et al. (1990) and Shy et al. (1996). In S-equation, most of the curvature term (> 60%) are positive (source term) near product side and become negative (consumption term) near the reactant side. The resut is reminiscent with that of Trouve and Poinsot (1994)and Veynante et al.(1996). Moreover , we find that Lewis number (Le) will affect the S value. When Le > 1, increasing turbulent intensity will increase S value. while remaining the same for value of S when Le < 1.en_US
DC.subject火焰表面密度方程式zh_TW
DC.subjectflame surface densityen_US
DC.subjectBML modelen_US
DC.title實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式zh_TW
dc.language.isozh-TWzh-TW
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明