dc.description.abstract | The most recent H.264 video coding utilizes complex predictions in both the temporal and spatial domains to get better performance than other standards. Certainly, such predictions may cause serious error propagation effects when suffering from transmission errors. Therefore, the objective of this paper is to develop a robust error resilient algorithm, named as the Synchronous Backward Error Tracking (SBET) algorithm, to completely terminate the error propagation.
If the state of the encoder can synchronize to that of the decoder, the error propagation effects can be entirely terminated. Therefore, we assume that a feedback channel is available and the encoder can be aware of the decoder’s error concealment by external means. The pixel-based Precise Backward Error Tracking (PBET) is utilized to track the error locations and propagate the concealment error of erroneous frame to the corresponding areas to reconstruct the state of the decoder in the encoder. Comparing with the full re-encoding method, the proposed method only involves memory access, simple addition and multiplication operations for the error-contaminated pixels. By observing the simulation results, the rate-distortion performance of the proposed algorithm is always better than that of the conventional algorithms. SBET outperforms PBET up to 1.21 dB under 3% slice error rate for the QCIF Foreman sequence. In addition, without using forced INTRA refreshing, the phenomenon of burst bit rate can be avoided. In the future, if a better error concealment technique is utilized, a better performance of SBET is also expected. | en_US |