博碩士論文 92344005 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學工程與材料工程學系zh_TW
DC.creator許惠如zh_TW
DC.creatorHui-ju Hsuen_US
dc.date.accessioned2011-1-26T07:39:07Z
dc.date.available2011-1-26T07:39:07Z
dc.date.issued2011
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=92344005
dc.contributor.department化學工程與材料工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract根據本研究實驗結果顯示,裂褶菌可有效利用木糖生產裂褶菌多糖體(schizophyllan glucan,SPG),且由組成分析比較可證明,即便以木糖作為培養基主要碳源,仍可產生組成比例與以葡萄糖為碳源相似的SPG,甚至在大分子量SPG分佈上也與葡萄糖培養結果相似約1000kDa左右。但若培養基中亦含有等比例的葡萄糖存在則會出現木糖利用率明顯降低與多糖產量降低之現象。 由於葡萄糖存在會抑制木糖發酵結果表現。因此,若欲以稻殼酸水解液作為替代碳源生產SPG,合適水解條件之選擇極為重要。而於本研究實驗過程發現,最適水解條件為:固液比10%(1:9);酸劑濃度1%(10 g/L) H2SO4;水解時間60min;水解溫度121℃;操作壓力1.2atm。而稻殼經此水解條件處理後,水解液中還原糖濃度經層析分析再與Mansilla等(1998)所提出的稻殼組成結果相比,可推測本研究所提之最佳水解條件應可將稻殼中聚戊糖成份接近100%完全水解成小分子糖類以供發酵使用。 因為水解過程中所衍生的抑制副產物,如:HMF、furfural、醋酸等,被文獻指出對微生物生長是有抑制作用,故在本研究也針對這些抑制物以各別添加與混合添加方式作比較。實驗結果發現,不論在菌體生長或多糖產量影響上,三者中以furfural之抑制表現最明顯,甚至當添加濃度達2.0g/L即出現完全抑制發酵進行現象。雖然,醋酸在添加濃度超過2.0g/L時也有抑制發酵表現之結果,但當添加濃度低於1.0g/L時則可明顯提高SPG產量,此時菌絲型態也與無醋酸添加有明顯不同。由於有研究提出,培養環境pH會影響醋酸對微生物之抑制作用,因此本研究也詳細比較不同初始pH環境下,醋酸對裂褶菌生產SPG之影響。另外,本研究也針對高醋酸(2.0g/L)培養環境下,比較初始pH=4.5與6.5對發酵之影響,於實驗過程中可觀察到,在初始pH=4.5操作條件下,於發酵初期,添加醋酸者其木糖消耗量明顯低於未添加醋酸之實驗。而透過醋酸濃度分析變化可發現,於發酵前期醋酸相較於木糖有較顯著的濃度下降現象,且隨著醋酸濃度降低,此時由層析圖中可看出,fumaric acid 隨之增加,甚至溶液pH也隨之提高至6左右。然而,初始pH=6.5並無出現木糖發酵前期使用緩慢的狀況,且在菌體產量上也與未添加醋酸之對照組相同。 此外,本研究也針對鹼中和劑之選擇與鹼劑金屬離子對發酵之影響深入探討比較。同時,本研究亦將文獻普遍使用移除酸水解液抑制物之方法(如:overliming與活性碳吸附)作比較,並針對抑制物移除效率與還原糖損失作深入探討。同時決定最適稻殼酸水解液之處理方式。實驗結果顯示,以Ca(OH)2 作為鹼中和劑,在於低pH環境中以活性碳粉末吸附移除furfural與色素,再將培養pH由4.5提高至6.5,並配合適當稀釋方式降低酸水解液之滲透壓與醋酸濃度,可有效將SPG產量明顯提高至約2.24g/L,而此產量約為一般培養基(葡萄糖為碳源)的1.5倍左右。因此,本論文認為經過最適處理後之稻殼酸水解液應可有效取代葡萄糖作為SPG發酵所需碳源來源。 最後,本研究也針對所產生的SPG之絮凝活性做比較,探討不同添加濃度與操作環境溫度及環境pH值對SPG絮凝活性影響。實驗結果顯示,在操作環境溫度控制在0~50℃,pH低於12皆可不影響SPG對皂土之絮凝活性表現,皆可達80﹪以上。另外,由於SPG之絮凝作用根據文獻指出主要以賴吸附與架橋機制達到降低水中濁度之目的,因此分子量大小對活性影響極大,而多糖體分子量分佈根據(許,95)指出與培養條件有極大相關,所以在本研究中也將比較不同培養條件對SPG平均分子量與分子量分佈之影響。 zh_TW
dc.description.abstractSchizophyllan glucan (SPG) could be used as biodegradable bioflocculant proved by Ferretti et al.(2003). But, SPG has failed in some areas of application to supplant conventional chemical flocculants due to its relatively high production costs. Thus, using low-cost substrate for SPG production would be economical attractive. The objective of this study was to develop a fermentation process for the bioflocculant SPG production from agricultural waste such as rice hulls. Results indicated that biomass from the untreated rice hulls reached only 0.54 g/L which was relatively poor as compared to those using glucose, currently the primary source for SPG, as carbon sources. Similar observation was reported that the corn fiber without suitable pretreatment could not be utilized by S. commune (Leathers et al.,2006). The results imply that effective pretreatment of rice hulls is crucial to successfully convert its carbohydrates for SPG production. In our study, an optimal pretreatment conditions was found to be 10% solids content with addition of 1% sulfuric acid and treatment time of 60 min at 121℃, in which 28g/L monosaccharide was released. And, xylose was the major sugar present in the hydrolysate. Although, both cell yield (YX/S) and product yield (YP/S) increased slightly as glucose was replaced by xylose, poor fermentation performance from crude hemicellulosic hydrolysate, when compared to those from synthetic medium. These results imply that some inhibitory components were present in rice hull hydrolysate and accounted for the poor fermentation performance of S. commune. Iin order to utilize rice hull hydrolysate more effectively for SPG production, this research carries on the discussion with the inhibitor tolerance ability of S.commune, both the effects of detoxification methods on the inhibitors remove ability and fermentation, and the flocculation activity of SPG. The experimental result shows, S. commune has a low tolerance to furfural as compared with HMF and acetic acid. No apparent cell growth was observed while 2.0g/L of furfural was added. Although HMF had a little influence on cellular biomass formation, it had a significant influence on SPG fermentation. When HMF was added to 2.0g/L, the relative SPG formation decreased to 43% of the control run. Acetic acid had a less inhibitory influence on SPG fermentation by S.commune, as compared with furfural and HMF. Moreover, the medium supplemented with 0.5g/L acetic acid, both xylose utilization and product yield were enhanced. Additionally, among all salt ions tested, sodium ions showed the maximum inhibitory effect toward SPG production, but calcium ions showed the minimum inhibitory influence. Based on the results of inhibitor supplementation, detoxification of rice hull hydrolysate using Ca(OH)2 to adjust pH and powered activated charcoal to remove furfural and HMF were adopted. The SPG product yield (YP/S) from the detoxificated hydrolysate was two folds of that of the hydrolysate without detoxification. We further demonstrated that acetic acid inhibition could be alleviated to some extend by pH adjustment to pH=6.5. en_US
DC.subject發酵培養zh_TW
DC.subject生物界面活性劑zh_TW
DC.subject生物絮凝劑zh_TW
DC.subject裂褶菌zh_TW
DC.subject多糖zh_TW
DC.subjectbiosurfactanten_US
DC.subjectbioflocculationen_US
DC.subjectpolysaccharideen_US
DC.subjectSchizophyllum communeen_US
DC.subjectfermentationen_US
DC.title利用稻殼酸水解液生產生物絮凝劑-Schizophyllan glucan之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleProduction of bioflocculant-schizophyllan glucan by Schizophyllum commune from hydrolysate of rice hullen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明