博碩士論文 93394009 完整後設資料紀錄

DC 欄位 語言
DC.contributor化學工程與材料工程學系zh_TW
DC.creator洪士婷zh_TW
DC.creatorShi-ting Hungen_US
dc.date.accessioned2007-7-23T07:39:07Z
dc.date.available2007-7-23T07:39:07Z
dc.date.issued2007
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=93394009
dc.contributor.department化學工程與材料工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在這論文中有三個主要的章節(第三章~第五章),首先在第三章的部分中,我們是使用24種溶劑(水、甲醇、乙醇、異丙醇、正丁醇、苯甲醇、丙酮、乙睛、硝基苯、二甲基甲醯胺、二甲基亞楓、丁酮、乙酸乙酯、甲基第三丁基醚、正庚烷、N,N-二甲基苯胺、二甲苯、間二甲苯、甲苯、苯、1,4,-二氧陸圜、四氫呋喃、氯仿和正丙醇)以高低溫的方式進行篩選,研究結果如下: (1)磺胺噻唑會分別溶於丁酮、四氫呋喃、丙酮、苯甲醇、正丙醇、乙睛、二甲基甲醯胺、乙醇、二甲基亞楓、甲醇和水中,然而四氫呋喃是最適合量產時所使用的溶劑,(2)在單一溶劑中,利用差式掃描熱量分析可能誘發出不同的磺胺噻唑同質異構 I,II,IV和V,在單一的溶劑中,這些同質異構的產生可視為一種混合的同質異構,(3)當磺胺噻唑溶於好溶的溶劑後,降溫後大多會產生片狀的晶帽,除了正丙醇溶劑外,(4)溶解度曲線可以讓我們知道不同溶劑在不同溫度點下磺胺噻唑的溶解度,可以提供量產時使用,(5)Solubility sphere可以讓我們知道磺胺噻唑是否會溶解於溶劑中,預測出哪些是好溶劑與壞溶劑,(6)同質異相表可以告知我們哪些溶劑或溶劑組合適合做溶劑篩選用,(7)我們所使用的結晶方法可以與製藥工業和學術做連結。 在第四章的實驗,我們使用混合的溶液(乙睛+正丙醇+水),是利用雞尾酒式的方法,以高低溫方式進行篩選,研究結果如下: (1)磺胺噻唑會溶於不同比例的莫耳比混合溶劑中,其中80:10:10,60:20:20 和 45:10:45 (乙睛:正丙醇:水)的組合是最適合量產的溶劑,和單一溶劑的四氫呋喃比較後,(2)從差式掃描熱量分析顯示下,在雞尾酒溶液中,可以發現不同的磺胺噻唑同質異構I,II,III,IV,V和VI,(3)利用不同比例的雞尾酒式溶劑做篩選,會產生小片狀和大片狀的晶帽,(4)雞尾酒式的溶劑比使用單一溶劑更適合量產用並且可減少環境污染。在第五章的實驗中,我們利用多型晶體耕作方式在晶圓上長晶做篩選,研究結果如下: (1)從板模的影響中,我們可以發現沒有鍛鍊過的幾丁聚醣薄膜會產生磺胺噻唑的同質異構 I,鍛鍊過的幾丁聚醣薄膜會產生磺胺噻唑的同質異構 III,同時也發現幾丁聚醣的–OH 和 –NH2 的官能基會與磺胺噻唑的S=O互相產生影響,發現板模與晶體相互接觸的作用,(2)水珠體積的影響,在不同揮發的路徑下會產生不同的同質異相,在這實驗中濃度和時間也是會隨變化影響,(3)不同溶劑的影響,甲醇的黏稠度比水低,所以在揮發過程中可以快速的從同質異構I轉變為同質異構 III,(4)溫度的影響,在揮發過程中當溫度提升,過飽和度下降時,會傾向較穩定的同質異構 III,因此在揮發的過程中我們只能收集到穩定的同質異構。zh_TW
dc.description.abstractThere were three important chapters (chapter 3~5) in this study. In chapter 3, we used 24 solvents water, methanol, ethanol, isopropyl alcohol (IPA), n-butyl alcohol, benzyl alcohol, acetone, acetonitrile, nitrobenzene, N,N-Dimethylformamide (DMF), dimethy sulfoxide (DMSO), methyl ethyl ketone (MEK), ethyl acetate, methyl-t- butyl ester (MTBE), n-heptane, n-propanol N,N-dimethylaniline(DMA), xylene, p-xylene, toluene, benzene, 1,4 dioxane, tetrahydrofurn (THF), chloroform, and n-propanol) for initial solvent screening by temperature cooling. Results of investigation were shown as follows: (1) Sulfathiazole was soluble in MEK, THF, acetone, benzyl alcohol, n-propanol, acetonitrile, DMF, ethanol, DMSO, methanol, and H2O. The THF was the best solvent for scale-up. (2) The DSC may have induced the various forms of sulfathiazole of Form I, III, IV, and V in the single solvent. The Forms could be produced as a mixture in the solvent. (3) The various kinds of good solvent produced practically plate-like crystals except n-propanol. (4) The solubility curves could supply us the information of the different solubility at various temperature in different solvents and are essential for scale-up. (5) The solubility sphere predicted which solvents were good and which were bad. (6) The Form space could provide the solvents or the solvent combinations suitable for solvent screening. (7) The temperature cooling from 60°C to 25°C in crystallization linked up with industrial application and research. In chapter 4, we used solvent mixtures (acetonitrile+n-propanol+H2O) for cocktail solvent by temperature cooling. Results of investigation were shown as follows: (1) Sulfathiazole was soluble in various molar ratios of solvent combinations. The 80:10:10, 60:20:20 and 45:10:45 combinations (acetonitrile: n-propanol: H2O) were optimum solvent combinations sulfathiazole Form III crystals for scale-up after comparing with solubility in the THF of the sulfathiazole Form III crystals. (2) The DSC revealed the various kinds of form: Form I, II, III, IV, V and IV of sulfathiazole generated from the cocktail solvents. (3) The various kinds of cocktail solvents produced small plate-like and large plate crystals. (4) The cocktail solvent was more suitable for scale-up than single solvent and it could reduce environmental pollution. In chapter 5, we used the method of polymorph framing on a chip to screen sulfathiazole’s polymorphism. Results of investigation were shown as follows: (1) The template effect: Form I of sulfathiazole was formed on non-annealed chitosan film. Form III of sulfathiazole was formed on annealed chitosan film. Chitosan’s –OH and –NH2 group interacted with sulfathiazole’s S=O. (2) The volume effect provided different pathways to change the polymorphic outcome, which depended on concentration and time in this case. (3) The solvent effect showed that methanol (0.6 cP) of lower viscosity than water (0.89 cP) influenced molecular mobility affected the transformation rate of Form I to Form III. (4) The temperature effect showed that as the temperature increased and supersaturation decreased that gave rise to preferred the stable Form (G*III > G*I). Thus, we could just only harvested Form III of sulfathiazole in the evaporative process.en_US
DC.subject溶劑篩選zh_TW
DC.subject多型晶體耕作方式zh_TW
DC.subject磺胺噻唑zh_TW
DC.subject同質異構zh_TW
DC.subjectpolymorph farmingen_US
DC.subjectsolvent screeningen_US
DC.subjectsulfathiazoleen_US
DC.subjectpolymorphen_US
DC.title磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選zh_TW
dc.language.isozh-TWzh-TW
DC.titleInitial,Cocktail Solvent Screening,and Polymorph Farming of Sulfathiazoleen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明