博碩士論文 943206015 完整後設資料紀錄

DC 欄位 語言
DC.contributor環境工程研究所zh_TW
DC.creator陳建良zh_TW
DC.creatorJian-liang Chenen_US
dc.date.accessioned2007-11-1T07:39:07Z
dc.date.available2007-11-1T07:39:07Z
dc.date.issued2007
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=943206015
dc.contributor.department環境工程研究所zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract廢棄物是錯放位置之資源。因此,將廢棄物適當的回收與再利用可符合資源永續發展之目標。為了有效益地利用廢棄物,本研究目標係利用下水泥灰渣混合其他廢棄的卜作嵐材料、水淬爐石粉,應用於水泥砂漿中,以降低水泥用量。另外,有許多研究發現,添加部分短纖維材料於水泥砂漿中可改善其結構。基於上述理由,本研究利用下水污泥灰渣與水淬爐石粉等再生材料,取代部分水泥,製作資源化水泥砂漿。同時,並應用回收之廢棄纖維如鋼纖維或塑膠纖維,做為改良資源化水泥砂漿之材料。目標期望可以提升水泥砂漿中整體再生材料之使用率,並獲得具有良好的抗壓強度、抗彎強度與乾燥收縮等工程性能之資源化水泥砂漿。 實驗結果顯示,利用下水污泥灰渣混合水淬爐石粉,取代50%水泥,製作之資源化水泥砂漿,其抗壓強度可趨近控制組,但對抗彎強度及乾燥收縮則無提升與改善之成效,因此仍有必要進一步改良資源化水泥砂漿。根據將回收廢棄之纖維材料,應用於資源化水泥砂漿之結果顯示,添加廢鋼纖維可改善砂漿之抗壓強度、抗彎強度及乾燥收縮等工程性能。在0.5~2.0%纖維添加量下,資源化水泥砂漿可較控制組提升5~21%之抗壓強度、20~71%之抗彎強度,及減少5~17%之乾燥收縮量。至於廢塑膠纖維則僅對砂漿之抗彎強度與乾燥收縮有些許成效,而對抗壓強度則無效果。綜合考量纖維對砂漿之改良效益,及對工作性之影響等因素,初步建議塑膠纖維與鋼纖維最適之纖維添加量,分別為0.5%以及1.0%。zh_TW
dc.description.abstractA waste is a resource out of place. Therefore, proper reclaim and reuse of wastematerials can meet the goal for sustainable development of resource. In order tobeneficial use of waste materials, this study was aim to utilize the admixture of sewagesludge ash (SSA) incorporated with other waste pozzolanic material, granulated blastfurnace slag (GBFS), into the cement mortar for reducing the amount of cementdemand. Also, many studies found that adding a small fraction of short fibers to mortarmixture during mixing was an effective way to improve the structure of cement mortar.For these reasons, this study intended to replace part of cement by the reclaimedmaterials of SSA and GBFS to produce a so-called “recycled cement mortar (RCM)”.Additionally, the recycled waste fiber, steel or plastic fiber, was also applied into RCMas the reinforced material. The overall objective was expected to investigate thefeasibility of applying large amount of waste materials as resources into cement mortar,and eventually, to obtain a RCM with well engineering properties, for example,compressive strength, flexural strength and drying shrinkage. Experimental results revealed that the RCM which using the admixture of SSAand GBFS to replace 50% of cement could obtain a close compressive strength ascompare to that of control specimen, but still could not enhance the flexural strengthand improve dry shrinkage. It indicated the necessary of further modification of RCM.Regarding the application of recycled waste fibers to reinforce RCM, the resultsshowed that the waste steel fiber could improve the engineering properties of RCM,included compressive strength, flexural strength and drying shrinkage. Thecompressive strength and flexural strength of RCM with waste steel fiber ranges from0.5 to 2 % by volume were about 5~21% and 20~71%, respectively, better than thoseof unreinforced RCM. Also, the reduction of the drying shrinkage was about 5~17%.In addition, the waste plastic fiber was only slight improvement in flexural strengthand drying shrinkage but no effect on the compressive strength of RCM. Consideringthe benefits of modification and the influence of workability of specimen, the optimumcontent of plastic fiber and steel fiber added to RCM was 0.5 and 1% by volume,respectively.en_US
DC.subject水淬爐石粉zh_TW
DC.subject下水污泥灰渣zh_TW
DC.subject廢棄纖維zh_TW
DC.subject水泥砂漿zh_TW
DC.subject抗壓強度zh_TW
DC.subject抗彎強度zh_TW
DC.subject乾燥收縮zh_TW
DC.subjectcompressive strengthen_US
DC.subjectgranulated blast furnace slagen_US
DC.subjectsewage sludge ashen_US
DC.subjectwaste fiberen_US
DC.subjectcement mortaren_US
DC.subjectflexural strengthen_US
DC.subjectdrying shrinkageen_US
DC.title應用廢棄纖維、爐石和灰渣等再生材料於水泥砂漿之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleApplication of Reclaimed Materials from Waste Fiber, Slag, and Ash in Cement Mortaren_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明