博碩士論文 943403017 完整後設資料紀錄

DC 欄位 語言
DC.contributor機械工程學系zh_TW
DC.creator崔海平zh_TW
DC.creatorHai-Ping TSUIen_US
dc.date.accessioned2008-6-21T07:39:07Z
dc.date.available2008-6-21T07:39:07Z
dc.date.issued2008
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=943403017
dc.contributor.department機械工程學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract機械加工後之表面粗糙度改善,常需借助拋光製程來完成,但具微細尺寸磨粒之拋光磨輪由於製造上之困難性,磨粒粒徑1~2 μm以下之拋光磨輪較難製造。當具較大尺寸磨粒之拋光磨輪被應用於拋光製程時,所產生之拋光痕較寬,致使吾人無法獲得鏡面加工之效果,另微小孔洞經機械加工後,微小孔洞內壁之鏡面拋光,因孔徑微小,目前尚未有低成本及簡易之拋光方法。因此,如何鏡面拋光機械加工後表面及提升加工品質,是本論文所要探討的主題。 本研究針對不銹鋼材料表面粗糙度改善及提升加工品質,提出了三種改善方法,分別為電泳沉積鏡面拋光、精微螺旋電極電化學鑽孔加工及電化學結合電泳微孔複合加工。經由實驗結果分析顯示,電泳沉積法進行表面拋光,使用SiC粒徑顆粒大小為0.9~1.5 μm,可將Ra 0.5 μm的車削面及Ra 1.67 μm的放電面分別改善至Ra 0.03 μm及Ra 0.05 μm的鏡面;另一種方法為採用精微螺旋電極進行電化學鑽孔加工,電化學加工反應生成物能有效排出至加工區域外,可將圓柱電極加工後之入口孔徑425 μm與出口孔徑362 μm分別降為335 μm及299 μm,有效改善電化學鑽孔加工後的微孔形狀精度;第三種方法為電化學結合電泳微孔複合加工,係於精微螺旋電極表面電泳沉積SiC磨粒而製成微複合工具,並使用該微複合工具同時施行微電化學鑽孔加工及微孔洞研磨之複合加工,可將精微螺旋電極電化學鑽孔加工之Ra 0.4 µm降至Ra 0.041 µm,對改善表面粗糙度效果相當明顯。zh_TW
dc.description.abstractSurface roughness of the machined parts can be improved by polishing process. Nevertheless, manufacturing polishing wheels with micro abrasive grains, especially those smaller than 1~2 μm, is extremely difficult. When polishing wheels with larger abrasive grains are used in polishing, the polishing marks on the surface of the specimen are wider. The mirror-like surface can not easily obtained. It is more difficult to polish the machined micro holes. In view of such drawbacks, this study aims to enhance the surface quality and precision of machined parts. In this study, three approaches improve the surface roughness and machining precision of stainless steel plate are proposed. Three approaches are the mirror surface polishing by using the electrophoretic deposition method, Electro-chemical micro drilling (ECMD) by using helical tool, ECMD and Electrophoretic Deposition (EPD) polishing complex micro-hole machining. For the first approach, the experimental results indicate not only that SiC particles of size 0.9~1.5 µm were used in EPD polishing, but also that the initial roughness of the turning and the EDM machined surface could be improved from 0.5 µm Ra and 1.67 µm Ra to 0.03 µm Ra and 0.05μm Ra respectively. The second approach using a micro helical tool as a novel solution in ECMD process to improve the machining accuracy. The reaction products can be squeezed out of the machining zone. The inlet and outlet diameters of the micro holes could be improved from 425 μm and 362 μm using micro cylindrical tool to 355 μm and 299 μm respectively. Finally, ECMD and EPD polishing complex micro-hole machining experiment was performed. The micro helical tool can be deposited with SiC particles in Phenolic Formaldehyde Resin solution as a hybrid micro-tool by electrophoretic deposition phenomenon. The hybrid micro-tool is used in ECMD and EPD polishing complex micro-hole machining.experiments. When the helical tool is used, the inner surface roughness of micro hole is 0.4 µm Ra. When the hybrid micro-tool is used, the inner surface roughness of micro hole declines markedly to 0.041 µm Ra. The inner surface roughness of micro hole can be significantly improved.en_US
DC.subject拋光磨輪zh_TW
DC.subject鏡面拋光zh_TW
DC.subject電泳沉積zh_TW
DC.subject電化學鑽孔zh_TW
DC.subject微複合工具zh_TW
DC.subject不銹鋼zh_TW
DC.subjectstainless steelen_US
DC.subjectelectrophoretic depositionen_US
DC.subjecthybrid micro-toolen_US
DC.subjectmirror surface polishingen_US
DC.subjectpolishing wheelen_US
DC.subjectelectrochemical drillingen_US
DC.title電化學結合電泳精密拋光不銹鋼之研究zh_TW
dc.language.isozh-TWzh-TW
DC.titleA study on stainless steel machining by using Electro-chemical machining with precise electrophoretic deposition polishing.en_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明