博碩士論文 952201001 完整後設資料紀錄

DC 欄位 語言
DC.contributor數學系zh_TW
DC.creator官彥良zh_TW
DC.creatorYen-Liang Kuanen_US
dc.date.accessioned2013-6-11T07:39:07Z
dc.date.available2013-6-11T07:39:07Z
dc.date.issued2013
dc.identifier.urihttp://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=952201001
dc.contributor.department數學系zh_TW
DC.description國立中央大學zh_TW
DC.descriptionNational Central Universityen_US
dc.description.abstract在這論文中我們主要是考慮兩個質數分佈的問題:第一是給定一個交換代數群 $A$,考慮 $A$ 模質數後,扭點是有理點的個數大小; 另一個是我們考慮秩為 1 的 Drinfeld 模上的 ErdH{o}s-Pomerance 猜想。 首先,給定一個交換代數群 $A$ 定義在體 $K$ 上。我們固定一個正整數 $n$。對每一個 $K$ 裡的質因子 $wp$,令 $N_{wp,n}$ 是 $A$ 模 $wp$ 後, $n$-扭點是有理點的個數。我們有興趣的是這個 $N_{wp,n}$ 的平均值,當 $wp$ 跑遍所有 $K$ 裡的質因子。當 $A$ 是一個一維的交換代數群,我們可以給這個平均值一個明確的公式。 第二個問題,我們考慮 $K$ 是一個包含一個一次質因子 $infty$ 的正特徵值函數體,而且令它的常數體是 $F_q$。 讓 $A$ 是一個環收集所有 $K$ 裡只有在 $infty$ 有奇異點的函數。令 $mathcal{O}$ 是 $A$ 的 Hilbert 類體裡最大的整數環,讓 $psi$ 是一個定義在 $mathcal{O}$ 上秩為 1 的特定 Drinfeld 模。給一個 $0 eq alpha in mathcal{O}$ 和一個 $mathcal{O}$ 裡的理想 $frak{M}$,令 $f_{alpha}left(frak{M} ight) = left{f in A : psi_{f}left(alpha ight) equiv 0 pmod{frak{M}} ight}$ 是一個 $A$ 裡的理想。 $omegaig(f_alphaleft(frak{M} ight)ig)$ 表示為 $f_alphaleft(frak{M} ight)$ 相異質理想因子的個數。我們可以証明下面這個量有常態分佈的性質: $$ frac{omegaig(f_alphaleft(frak{M} ight)ig)-frac{1}{2}left(logdegfrak{M} ight)^2}{frac{1}{sqrt{3}}left(logdegfrak{M} ight)^{3/2}}. $$zh_TW
dc.description.abstractIn this thesis, we are concerned with two problems on the distribution of primes, the distribution according to the size of torsion of a given algebraic group modulo primes and an Erdos-Pomerance conjecture for rank one Drinfeld modules. First of all, we consider a commutative algebraic group $A$ which is defined over a global field $K$. Then, we fix a positive integer $n$. For a prime divisor $wp$ of $K$, let $F_{wp}$ denote the residue field. If $A$ has good reduction at $wp$, let $ ilde A$ be the reduction of $A$ modulo $wp$ and let $N_{wp,n}$ be the number of $n$-torsion points in $ ildeAleft(F_wp ight)$, the set of $F_{wp}$-rational points in $ ilde A$. If $A$ has bad reduction at $wp$, let $N_{wp,n} = 0$. Let $ ormwp$ denote the norm of $wp$, equal to the cardinality of the residue field $F_wp$. We are interested in the average value of $N_{wp, n}$, where $wp$ runs through the prime divisors in $K$, namely the limit $$ limlimits_{x ightarrow infty } frac{1}{pi_{K}(x)}sumlimits_{ ormwp leq x}N_{wp,n}, $$ where $pi_{K}(x)$ is the number of primes $wp$ with $ ormwp leq x$. We denote this limit by $M(Bbb A_{/K}, n)$. We shall derive explicit formulas for the average value $M(Bbb A_{/K}, n)$ when $A$ is a commutative algebraic group of dimension one defined over $K$. Secondly, we consider a global function field $k$ of positive characteristic containing a prime divisor $infty$ of degree one and whose field of constants is $Bbb F_q$. Let $A$ be the ring of elements of $k$ which are regular outside $infty$. Let $psi$ be a sgn-normalized rank one Drinfeld $A$-module defined over $mathcal{O}$, the integral closure of $A$ in the Hilbert class field of $A$. Given any $0 eq alpha in mathcal{O}$ and an ideal $frak{M}$ in $mathcal{O}$, let $f_{alpha}left(frak{M ight) = left{f in A : psi_{f}left(alpha ight)equiv 0 pmod{frak{M}} ight}$ be the ideal in $A$. We denote by $omegaig(f_alphaleft(frak{M} ight)ig)$ the number of distinct prime ideal divisors of $f_alphaleft(frak{M} ight)$. If $q eq 2$, we prove that the following quantity $$ frac{omegaig(f_alphaleft(frak{M} ight)ig)-frac{1}{2}left(logdegfrak{M} ight)^2}{frac{1}{sqrt{3}}left(logdegfrak{M} ight)^{3/2}} $$ distributes normally.en_US
DC.subject代數群zh_TW
DC.subject橢圓曲線zh_TW
DC.subjectDrinfeld 模zh_TW
DC.subject函數體zh_TW
DC.subjectalgebraic groupsen_US
DC.subjectellipeic curvesen_US
DC.subjectDrinfeld modulesen_US
DC.subjectfunction fieldsen_US
DC.titleOn the Distribution of Primeszh_TW
dc.language.isozh-TWzh-TW
DC.titleOn the Distribution of Primesen_US
DC.type博碩士論文zh_TW
DC.typethesisen_US
DC.publisherNational Central Universityen_US

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明