### 博碩士論文 972201035 完整後設資料紀錄

 DC 欄位 值 語言 DC.contributor 數學系 zh_TW DC.creator 曾宇揚 zh_TW DC.creator Yu-yang Tseng en_US dc.date.accessioned 2014-1-28T07:39:07Z dc.date.available 2014-1-28T07:39:07Z dc.date.issued 2014 dc.identifier.uri http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN= 972201035 dc.contributor.department 數學系 zh_TW DC.description 國立中央大學 zh_TW DC.description National Central University en_US dc.description.abstract 在第二章，我重新整理了Lenstra的筆記和Grothendieck的SGA I的5.4章節。基本上可以分成兩個部分： 第一個部分根據Lenstra筆記的第三章。有一些比較省略的步驟，還有一些步驟留作習題，我把這些地方補上並想辦法寫得更流暢些。第二個部分根據Grothendieck的SGA I的5.4章節，用pro-objects的技術，首次出現是在Seminaire Bourbaki一篇Grothendieck的文章裡。我從原來文章裡簡短的描述中，給了定理4.1一個詳細的證明。 zh_TW dc.description.abstract In chapter 2, I reorganize some part of cite{Le08} and cite{SGA1}. Basically it can be divided into two parts: the first part follows cite{Le08} Chapter 3. Some steps are written a bit roughly and some steps are exercises in original texts, I just make them more fluent, and write down the exercises; The second part follows cite{SGA1} Section 5.4, using the technique so called pro-objects, first introduced by Grothendieck in his article in Seminaire Bourbaki cite{Gr59}. I give a proof of cite{SGA1} Expos{e} V. Theorem 4.1, following the brief sketch in the original article. en_US DC.subject 伽羅瓦理論 zh_TW DC.subject 伽羅瓦範疇 zh_TW DC.subject 亞歷山大·格羅滕迪克 zh_TW DC.subject Galois theory en_US DC.subject Galois category en_US DC.subject Grothendieck en_US DC.title 伽羅瓦理論 zh_TW dc.language.iso zh-TW zh-TW DC.title Galois Theories en_US DC.type 博碩士論文 zh_TW DC.type thesis en_US DC.publisher National Central University en_US