dc.description.abstract | Abstract
Today, with the rapid development of information, large scale or super large scale microelectronics production areas require higher requirements for the control environment of the dust-free room due to process technology. As a result, the more effective air flow pattern in the dust free chamber is an effective way to improve the cleanliness of the dust free. This paper mainly studies and discusses the use of data simulation calculation (CFD) technology to simulate the air flow composition of the dust free chamber with different circulation coverage rate and different return air type. The analysis and improvement of the problems derived from the dust chamber are explained.
This paper introduces the application of dust free room technology. In this paper, the main design forms of air conditioning system in the dust-free room of the semiconductor factory are the mainstream design form of the air conditioning system of the vertical laminar dust free room (MAU: Mack Air Unity) + (FFU: Fan Filter Unity) + (DCC: Dry Cooling coil). The working principle of the ng Coil combination is discussed, and the factors affecting cleanliness of the dust-free room are discussed.
CFD technology is selected, the mathematical model of K- e eddy with high Reynolds number and the mathematical discrete method of finite volume are used, and the numerical simulation software Fluent6.0 is selected. Under the coverage rate of different fan filter unit (FFU), the airflow organization of two kinds of dust free rooms of the ground Cheese table return air and the side air return air return air mode are carried out. In the simulation evaluation, the velocity of airflow distribution under different FFU coverage is obtained, and then it is applied to the analysis of the problems derived from the actual panel electronic building under the dynamic conditions and the improvement of the verification.
Finally, the full text is summarized, and further consideration and solution are needed for the problems encountered in the future concrete engineering practice of the airflow organization in the vertical laminar free chamber. | en_US |